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Abstract 

The theoretical foundation of acoustic radiation pressure in plane wave beams is re-

examined.  It is shown from finite deformation theory and the Boltzmann-Ehrenfest 

Adiabatic Principle that the Brillouin stress tensor (BST) is the radiation stress in 

Lagrangian coordinates (not Eulerian coordinates) and that the terms in the BST are 

not the momentum flux density and mean excess Eulerian stress but are simply 

contributions to the variation in the wave oscillation period resulting from changes 

in path length and true wave velocity, respectively, from virtual variations in the 

strain.  It is shown that the radiation stress in Eulerian coordinates is the mean Cauchy 

stress (not the momentum flux density, as commonly assumed) and that Langevin’s 

second relation does not yield an assessment of the mean Eulerian pressure, since the 

enthalpy used in the traditional derivations is a function of the thermodynamic 

tensions - not the Eulerian pressure.  It is shown that the transformation between 

Lagrangian and Eulerian quantities cannot be obtained from the commonly-used 

expansion of one of the quantities in terms of the particle displacement, since the 

expansion provides only the difference between the value of the quantity at two 

different points in Cartesian space separated by the displacement.  The proper 

transformation is obtained only by employing the transformation coefficients of 

finite deformation theory, which are defined in terms of the displacement gradients.  

Finite deformation theory leads to the result that for laterally unconfined, plane 

waves the Lagrangian and Eulerian radiation pressures are equal with the value 

(1/4)〈2𝐾〉 along the direction of wave propagation, where 〈𝐾〉 is the mean kinetic 

energy density, and zero in directions normal to the propagation direction.  This is 
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contrary to the Langevin result that the Lagrangian radiation pressure in the 

propagation direction is equal to 〈2𝐾〉 and the BST result that the Eulerian radiation 

pressure in that direction is the momentum flux density.   

 

Key Words: Acoustic radiation pressure, laterally confined and unconfined waves, finite 

deformation theory, adiabatic invariance  

 

1. Introduction 

 The radiation pressure generated by an acoustic wave is used in a variety of 

applications such as acoustic radiation force-based elasticity imaging [1-9], 

acoustophoretic drug delivery [10], acoustic tweezers [11-15], the characterization of 

atomic force microscope cantilevers [16,17], and the calibration of ultrasonic transducers 

[18-22].  The search for the proper understanding of radiation stress in acoustic fields has 

been controversial and elusive since the pioneering efforts of Lord Rayleigh [23], Brillouin 

[24,25], Hertz and Mende [26], and Langevin [27,28] in the early twentieth century and 

has continued to the present time [29-52].  As pointed out by Beyer [47], the controversy 

is fueled by confusion arising from differing definitions, faulty assumptions, and 

simplifying idealizations among other factors.  The focus of the present work is to 

understand Lagrangian and Eulerian radiation stresses (pressures) in a progressive, 

acoustic, plane wave beam via a direct application of finite deformation theory [53-60].  It 

is shown that much of the confusion results (a) from a widespread misunderstanding of 

Lagrangian and Eulerian coordinates and of the transformation between Lagrangian and 

Eulerian quantities, (b) from a misinterpretation by Brillouin of terms leading to the 

Brillouin stress tensor, and (c) from the long-standing assumption that the pressure defined 

by the enthalpy in deriving Langevin’s second relation is the Eulerian pressure rather than 

the thermodynamic tensions (second Piola-Kirchhoff stress).  

A critical analysis of Lagrangian and Eulerian coordinates and quantities is 

presented in Section 2 from the perspective of finite deformation theory.  It is shown that 

the traditionally used transformation between Eulerian and Lagrangian quantities, obtained 

from power series expansions of either the Eulerian or Lagrangian quantity in terms of the 

particle displacement, is incorrect.   It is shown in conjunction with Appendix A that, 
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contrary to a prevalent assumption, the Lagrangian and Eulerian mass densities are equal 

and that, in conjunction with Appendix B, the Lagrangian and Eulerian pressures are equal 

in the direction of plane wave propagation – again contrary to derivations based on the 

traditionally used power series transformation between Eulerian and Lagrangian quantities.      

A particular focus of the present work is on acoustic radiation pressure in fluids.  It 

has long been assumed that radiation pressure in fluids is highly dependent on whether 

motion of fluid normal to the wave propagation direction is allowed – i.e., on whether the 

acoustic beam is laterally confined or laterally unconfined.  Section 3 focuses on acoustic 

radiation pressure for laterally confined, plane wave propagation.  Two independent 

approaches are used to assess the radiation pressure.  One approach is a straightforward 

application of finite deformation theory.  The second approach employs the Boltzmann-

Ehrenfest Principle of Adiabatic Invariance – the approach used by Brillouin [24,25].  Both 

approaches lead to the result that the Brillouin stress tensor is the radiation stress referred 

to Lagrangian coordinates, contrary to Brillouin’s assumption that the stress tensor refers 

to Eulerian coordinates.  The radiation stress in Eulerian coordinates is shown to be the 

time-averaged Cauchy stress – not the Brillouin stress tensor, as traditionally assumed.  

Along the plane wave propagation direction, the Lagrangian and Eulerian radiation 

pressures are shown to be exactly equal. 

Section 4 focuses on the acoustic radiation pressure for laterally unconfined plane 

wave beams.  Again, two independent approaches are used to assess the radiation pressure 

– one is a direct application of finite deformation theory and the second employs the 

Boltzmann-Ehrenfest Adiabatic Principle.  The derivations show that for both Lagrangian 

and Eulerian coordinates the radiation pressure along the direction of plane wave 

propagation is equal to (1 4⁄ )〈2𝐾〉, where 〈𝐾〉 is the mean kinetic energy density of the 

plane wave.  This result is contrary to the value 〈2𝐾〉 for the Lagrangian radiation pressure 

obtained from the Langevin theory [27].  In directions normal to the propagation direction, 

the present derivations show that the radiation pressure is zero for both Lagrangian and 

Eulerian coordinates.   

It is generally assumed that Langevin’s second relation [28] refers to Eulerian 

coordinates and provides an assessment of the mean Eulerian excess pressure.  Brillouin 

assumed (incorrectly, as shown in Section 3.2.2) that one of the two terms in the Brillouin 



 

4 

 

stress tensor is the mean Eulerian excess stress (pressure).  He assumed that the mean 

Eulerian excess stress is zero for plane wave propagation, leaving the acoustic radiation 

stress to result from the second term in the Brillouin stress tensor - the momentum flux 

density (also shown in Section 3.2.2 to be incorrect).  Section 4.2 provides a critical 

analysis of Langevin’s second relation.  It is shown that the pressure associated with the 

enthalpy in deriving Langevin’s second relation is the thermodynamic pressure (second 

Piola-Kirchhoff pressure) rather than the Eulerian pressure, as generally assumed, and, 

when accounted for, renders the Langevin’s second relation invalid.     

 

2. Elements of finite deformation theory 

Much of the confusion surrounding acoustic radiation pressure in fluids is 

associated with a misunderstanding of Lagrangian and Eulerian coordinates and of the 

relationships between Lagrangian and Eulerian quantities.  It is thus instructive to derive 

the relevant relationships in some detail from the perspective of finite deformation theory.  

The relationships between Lagrangian and Eulerian quantities are central to the theory of 

finite deformations, which was originally developed by Murnaghan [53], codified as a field 

theory by Truesdell and Toupin [58], Truesdell and Noll [59], and applied to acoustic wave 

propagation by Truesdell [54], Thurston [55], Thurston and Brugger [56], Thurston and 

Shapiro [57], and Wallace [60].  Finite deformation theory applies to any material of 

arbitrary crystalline symmetry including ideal fluids, which can be viewed as an isotropic 

material with zero shear modulus.  

 

2.1.  Lagrangian and Eulerian coordinates 

Consider a material for which the initial (rest) configuration of particles comprising 

the material body is denoted by the set of position vectors {X} = {X1, X2, X3} in a three-

dimensional Cartesian reference frame having unit vectors e1, e2, and e3 along the 

coordinate axes.  The (X1, X2, X3) coordinates are known as Lagrangian or material (initial 

or rest) coordinates. Under an impressed stress the positions of the material particles will 

move from the initial (rest) set of vectors {X} to new positions described by the set of 

position vectors {x}= {x1, x2, x3} in the same three-dimensional Cartesian reference frame.  

The (x1, x2, x3) coordinates are known as Eulerian or spatial (present) coordinates in the 
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Cartesian reference frame.  It is assumed that x and X are functionally related as 𝒙 =

𝒙(𝑿, 𝑡) where t is time.  The present configuration of particles {x} is then related to the 

initial configuration {X} by means of an elastic deformation defined by the set of 

transformation (deformation) coefficients 𝛼𝑖𝑗 = 𝜕𝑥𝑖 𝜕𝑋𝑗⁄ , where xi and Xj, respectively, are 

the Cartesian components of the vectors x and X.  The indices i and j take the values 1, 2, 

3 representing the three mutually orthogonal Cartesian axes.  An elemental length dX in 

the Lagrangian coordinates is transformed to an elemental length dx in the Eulerian 

coordinates as 𝑑𝑥𝑖 = 𝛼𝑖𝑗𝑑𝑋𝑗.  The Einstein convention of summation over repeated indices 

is used in the present work.  The inverse deformation is described by the set of 

transformation coefficients 𝛾𝑖𝑗 defined such that 𝛾𝑖𝑗𝛼𝑗𝑘 = 𝛿𝑖𝑘, where ij is the Kronecker 

delta.  If the deformation is non-uniform (i.e., varies with spatial position), the deformation 

is considered to be local in X and time t.   

The deformation is defined by following the motion of a given particle originally 

at rest in the Lagrangian position X, which during deformation is displaced to the Eulerian 

position x.  The particle displacement u is defined by u = x - X.  The transformation 

coefficients ij are related to the displacement gradients 𝑢𝑖𝑗 = 𝜕𝑢𝑖 𝜕⁄ 𝑋𝑗 as 

 

           𝛼𝑖𝑗 = 𝛿𝑖𝑗 + 𝑢𝑖𝑗     .    (1) 

 

For finite deformations Murnaghan [53] pointed out that the Lagrangian strains ij defined 

as 

         𝜂𝑖𝑗 =
1

2
(𝛼𝑘𝑖𝛼𝑘𝑗 − 𝛿𝑖𝑗) =

1

2
(𝑢𝑖𝑗 + 𝑢𝑗𝑖 + 𝑢𝑘𝑖𝑢𝑘𝑗)  (2) 

 

are rotationally invariant and provide an alternative to the displacement gradients 𝑢𝑖𝑗 as a 

strain measure.  Eqs.(1) and (2) hold for any material system having arbitrary crystalline 

symmetry - solid or fluid.  

 

2.2. Lagrangian and Eulerian quantities 

A physical quantity q in the deformed state but referred to the Lagrangian (initial, 

rest, or un-deformed state) coordinates at time t is defined as the Lagrangian quantity 
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𝑞𝐿(𝑿, 𝑡) .  The same quantity referred to the Eulerian (present or deformed state) 

coordinates at the same time t is defined as the Eulerian quantity 𝑞𝐸(𝒙, 𝑡).  Since 𝑞𝐿(𝑿, 𝑡) 

and 𝑞𝐸(𝒙, 𝑡) represent the same physical quantity q in the deformed state at the same 

position 𝒙 = 𝒙(𝑿, 𝑡) = 𝑿 + 𝒖(𝑡)  and same time t in Cartesian space, the relationship 

between the Lagrangian and Eulerian expressions of that quantity must necessarily be [55] 

𝑞𝐿(𝑿, 𝑡) = 𝑞𝐸(𝒙, 𝑡)|𝑿+𝒖(𝑡).  

It has been assumed in the acoustics literature since the early twentieth century that 

quantities qE(x,t) in Eulerian coordinates are related to quantities qL(X,t) in Lagrangian 

coordinates via a series expansion in the displacement u as (dropping subscripts and 

assuming longitudinal displacements along a single Cartesian axis) [24-26,32-35,38-40,42]  

 

   𝑞𝐸(𝑥, 𝑡) = 𝑞𝐿(𝑋, 𝑡)|𝑋=𝑥−𝑢 = 𝑞𝐿(𝑋, 𝑡)|𝑋=𝑥 −
𝜕𝑞𝐿

𝜕𝑋
(𝑋, 𝑡)|𝑋=𝑥𝑢 + ⋯         (3) 

 

or, inversely, as 

 

    𝑞𝐿(𝑋, 𝑡) = 𝑞𝐸(𝑥, 𝑡)|𝑥=𝑋+𝑢 = 𝑞𝐸(𝑥, 𝑡)|𝑥=𝑋 +
𝜕𝑞𝐸

𝜕𝑋
(𝑥, 𝑡)|𝑥=𝑋𝑢 + ⋯   .    (4) 

 

It is generally assumed in Eq.(4), for example, that the Lagrangian quantity is 𝑞𝐿(𝑋, 𝑡) and 

that the relevant Eulerian quantity is the first term 𝑞𝐸(𝑥, 𝑡)|𝑥=𝑋 in the series expansion.  

This cannot be true, because the first equality already states that the Lagrangian quantity 

𝑞𝐿(𝑋, 𝑡) is equal to the Eulerian quantity 𝑞𝐸(𝑥, 𝑡)|𝑥=𝑋+𝑢 at the same point (deformed state) 

in Cartesian space at all times t.  Indeed, the Lagrangian quantity 𝑞𝐿(𝑋, 𝑡) corresponds to 

the value of the quantity 𝑞𝐿  in the deformed state at the Eulerian position x at time t 

(corresponding to 𝑢(𝑡) ≠ 0) that previously had the value 𝑞𝐿(𝑋, 𝑡0) in the un-deformed 

state at the initial (Lagrangian) position X at the initial time t0 (corresponding to 𝑢(𝑡0) =

0).  The first equality 𝑞𝐿(𝑋, 𝑡) = 𝑞𝐸(𝑥, 𝑡)|𝑥=𝑋+𝑢 in Eq.(4) means that both the Lagrangian 

quantity and the Eulerian quantity involve the same particle that initially is in the un-

deformed position X at time t0 (corresponding to u(t0) = 0) in Cartesian space but has moved 

at time t from the un-deformed position X to the deformed position x(t) = X + u(t) in 

Cartesian space.   
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A Eulerian quantity represents the value of a quantity associated with a particle in 

the present (deformed) position.  The quantity 𝑞𝐸(𝑥, 𝑡)|𝑥=𝑋  in the expansion of Eq.(4) 

represents the value of a quantity associated with a particle whose present position at x = 

X originates from some un-deformed position 𝑋′  in Cartesian space that is generally 

different from X.  That is, the particles that appear at x = X and at x = (X + u) in Eulerian 

coordinates originate from two different Lagrangian coordinate positions in Cartesian 

space and, hence, represent deformations (displacements) corresponding to two different 

particles (except when u = 0).  Thus, the last equality in Eq.(4) is nothing more than the 

statement that the difference between the values of the Eulerian quantity evaluated at two 

different points in Cartesian space (corresponding to the present positions of two different 

particles differing by a distance u) is obtained as 

 

                        𝑞𝐸(𝑥)|𝑥=𝑋+𝑢 − 𝑞𝐸(𝑥)|𝑥=𝑋 =
𝜕𝑞𝐸

𝜕𝑋
(𝑥)|𝑥=𝑋𝑢 + ⋯  .   

 

A similar argument regarding Eq.(3) leads to the conclusion that the difference between 

the values of the Lagrangian quantity evaluated at two different points in Cartesian space, 

differing by the distance u, is equal to 

 

                                 𝑞𝐿(𝑋)|𝑋=𝑥−𝑢 − 𝑞𝐿(𝑋)|𝑋=𝑥 = −
𝜕𝑞𝐿

𝜕𝑋
(𝑋)|𝑋=𝑥𝑢 + ⋯. 

 

It is concluded that the first term in the power series expansions of Eqs.(3) and (4) does not 

represent the quantity conjugate to the quantity on the left of the equations and that Eqs.(3) 

and (4) do not define the transformation between Lagrangian and Eulerian quantities.  Such 

a transformation can only be obtained by employing the transformation coefficients 𝛼𝑖𝑗 

and 𝛾𝑖𝑗, which involve the displacement gradients rather than the displacements.  

In a related issue, it is often assumed in the acoustics literature for fluids that the 

Eulerian coordinates correspond to surfaces fixed in Cartesian space and that the 

Lagrangian coordinates correspond to surfaces that oscillate in space under an impressed 

sinusoidal wave [26,32,39,46].  An oscillating material surface is defined by a set of n 

contiguous, particle displacements un(t) (n = 1, 2, 3, ∙∙∙) that vary sinusoidally in time t.  
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Relative to fixed Lagrangian coordinates Xn, the time-dependent particle displacements 

un(t) are defined by un(t) = xn(t) – Xn  (n = 1, 2, 3, ∙∙∙).  The Eulerian coordinates x in this 

case are time-dependent.  Relative to fixed Eulerian coordinates xn the particle 

displacements un(t) are defined by un(t) = xn – Xn(t), where it is the Lagrangian coordinates 

that are now dependent on time t.  Since it is the displacements that define the motion of 

the surface, it is apparent that the displacements can occur with respect to either fixed 

Lagrangian or fixed Eulerian coordinates - a consequence of the relativistic principle that 

for coordinate systems moving relative to each other it does not matter in regard to the 

relative displacement which system is regarded as moving and which is considered fixed.    

If one chooses Lagrangian coordinates to represent points fixed in Cartesian space, 

then the value of a quantity at time t corresponds to that following the motion of a single 

particle that has moved from position X to position x(t) = X + u(t) relative to the fixed 

Lagrangian coordinates X.  If one chooses Eulerian coordinates x to represent points fixed 

in Cartesian space, then (because of the definition of Lagrangian and Eulerian coordinates) 

the value of a quantity at a fixed position x at time t corresponds to that following a 

succession of particles with increasing time t, each particle originating at different 

Lagrangian coordinate positions X.  It is crucially important to understand that points fixed 

in Cartesian space and points oscillating in Cartesian space are represented equally well in 

either Lagrangian or Eulerian coordinates.  The failure to apply this relativistic principle to 

Lagrangian and Eulerian coordinates has led to substantial errors in quantifying acoustic 

radiation pressure.   

  

2.3.  Mass density in Lagrangian and Eulerian coordinates 

A direct application of the transformation coefficients given in Eq.(1) for an 

initially un-deformed volume of material is shown in Appendix A to result in the well-

known relationship   

                                                        
𝜌0

𝜌
= det 𝛼𝑖𝑗 ≡ 𝐽     (5) 

     = 1 + 𝑢11 + 𝑢22 + 𝑢33 + 𝑢11𝑢22 + 𝑢11𝑢33 + 𝑢22𝑢33 + 𝑢11𝑢22𝑢33. 

 

where  is the mass density in the initial (un-deformed) state,  is the mass density in the 

deformed state, and J is the Jacobian of the transformation defined as the determinant of 
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the transformation coefficients ij.  It is important to recognize that  is the mass density 

in the un-deformed state for both the Lagrangian and Eulerian coordinates and that  is the 

mass density in the deformed state for both the Lagrangian and Eulerian coordinates.  This  

is apparent from the first equality in Eqs.(3), which states that the mass density 𝜌0 =

𝜌𝐸(𝑥, 𝑡0) = 𝜌𝐿(𝑋, 𝑡0)|𝑋=𝑥 is the mass density in the initial (un-deformed) state at time t0, 

where 𝑢(𝑡0) = 0 , and that 𝜌 = 𝜌𝐸(𝑥, 𝑡) = 𝜌𝐿(𝑋, 𝑡)|𝑋=𝑥−𝑢  is the mass density in the 

deformed state at time t, where 𝑢(𝑡) ≠ 0 .  Similarly, from Eq.(4) 𝜌0 = 𝜌𝐿(𝑋, 𝑡0) =

𝜌𝐸(𝑥, 𝑡0)|𝑥=𝑋 , where 𝑢(𝑡0) = 0, and  𝜌 = 𝜌𝐿(𝑋, 𝑡) = 𝜌𝐸(𝑥, 𝑡)|𝑥=𝑋+𝑢 , where 𝑢(𝑡) ≠ 0.  

Thus, the first equality in both Eq.(3) and Eq.(4) states that the mass density  has the same 

value at the same point and time in Cartesian space whether referred to the Lagrangian or 

Eulerian coordinates, since for either coordinates the mass density refers to the same state 

of deformation at a given point and time t.  The expansion given by the last equality in 

Eqs.(3) and (4) leads (incorrectly) to quite different values for the mass density in the two 

coordinates, when the first term in the expansion is assumed to represent the relevant 

conjugate density. 

 It is very important to recognize that 𝜌 and 𝜌0 represent the mass density in the 

deformed and undeformed states, respectively, in both Lagrangian and Eulerian 

coordinates.  Although Eq.(5) provides an expression of 𝜌 as a function of the displacement 

gradients, which are referred to the Lagrangian coordinates, this does not mean that 𝜌 in 

Eq.(5) now becomes exclusively the Lagrangian mass density, as often assumed.  It is still 

the mass density in the deformed state for both Lagrangian and Eulerian coordinates in 

accordance with the first equality in Eqs.(3) and (4).  The expression of the deformed mass 

density in terms of the displacement gradients does not change the equality.  The 

assumption that the Lagrangian and Eulerian mass densities are different has been fueled 

by the incorrect assumption that the expansion given by the last equality in Eqs.(3) and (4) 

provides an appropriate transformation between Lagrangian and Eulerian quantities, when 

the first term in the expansion is assumed to represent the relevant conjugate density. 

 

2.4.  Stress in Lagrangian and Eulerian coordinates 

Stress is defined in terms of the derivative of the internal energy per unit volume 

with respect to the relevant strain measure, which leads to the stress-strain relationships.  
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The internal energy per unit mass U(x, 𝑆𝑚) of material depends on the relative positions of 

the particles comprising the material and the entropy per unit mass 𝑆𝑚. This means that the 

internal energy per unit volume  = 0U(x,Sm) can be expressed as a function of the 

displacement gradients uij or as a function of the Lagrangian strains ij as [60] 

 

              𝜙 = 𝜌0𝑈(𝑿, 𝜂𝑖𝑗 , 𝑆𝑚)        (6)  

 

                  = 𝜌0𝑈(𝑿, 0, 𝑆𝑚) + 𝐶𝑖𝑗𝜂𝑖𝑗 +
1

2
𝐶𝑖𝑗𝑘𝑙𝜂𝑖𝑗𝜂𝑘𝑙 +

1

3!
𝐶𝑖𝑗𝑘𝑙𝑝𝑞𝜂𝑖𝑗𝜂𝑘𝑙𝜂𝑝𝑞 + ⋯ 

           

 = 𝜌0𝑈(𝑿, 𝑢𝑖𝑗 , 𝑆𝑚) = 𝜌0𝑈(𝑿, 0, 𝑆𝑚) + 𝐴𝑖𝑗𝑢𝑖𝑗 +
1

2
𝐴𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑢𝑘𝑙 +

1

3!
𝐴𝑖𝑗𝑘𝑙𝑝𝑞𝑢𝑖𝑗𝑢𝑘𝑙𝑢𝑝𝑞 + ⋯ 

 

where Aij, Aijkl, and Aijklpq, respectively, are the first, second, and third-order Huang 

coefficients and Cij, Cijkl, and Cijklpq, respectively, are the first, second, and third-order 

Brugger elastic constants [55,60].  Substituting Eq.(2) in Eq.(6) and comparing the 

coefficients of like powers of the displacement gradients yield the relations [60] 

 

          𝐴𝑖𝑗 = 𝐶𝑖𝑗 = 𝑇𝑖𝑗(𝑿) = (𝑇𝑖𝑗)
0

= 𝜎𝑖𝑗(𝑿) = (𝜎𝑖𝑗)
0
  (7) 

                        𝐴𝑖𝑗𝑘𝑙 = 𝑇𝑗𝑙(𝑿)𝛿𝑖𝑘 + 𝐶𝑖𝑗𝑘𝑙    (8) 

         𝐴𝑖𝑗𝑘𝑙𝑝𝑞 = 𝐶𝑗𝑙𝑝𝑞𝛿𝑖𝑘 + 𝐶𝑖𝑗𝑞𝑙𝛿𝑘𝑝 + 𝐶𝑗𝑘𝑞𝑙𝛿𝑖𝑝 + 𝐶𝑖𝑗𝑘𝑙𝑝𝑞     (9) 

   

The first-order constants 𝐴𝑖𝑗 are the initial stresses at position x = X in the material and are 

denoted in various alternative ways in Eq.(7) that will become apparent below.    

A stress is a force per unit area obtained by differentiating Eq.(6) with respect to 

the appropriate strain measure, 𝜂𝑖𝑗 or 𝑢𝑖𝑗, and is thus a second rank tensor.  It is noted that 

while the strain is defined with respect to the initial state of the material (i.e., with respect 

to the Lagrangian coordinates), the force Fi is usually defined with respect to a unit area of 

deformed material (i.e., with respect to the Eulerian coordinates) [55,58,59].  An exception 

is the thermodynamic tensions (second Piola-Kirchhoff stress) for which both the strain 

and the force are referred to the initial state [55,58,59].  The stresses most relevant to 

acoustic wave propagation are the Eulerian (Cauchy) stresses and Lagrangian (first Piola-
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Kirchhoff) stresses.  The Eulerian or Cauchy stress Tij is the force per unit area referred to 

the present configuration.  It is a force per unit area for which both the force and the area 

are referred to the deformed state x [54-60].  The Cauchy stresses, evaluated in the present 

(perturbed or deformed) configuration x, are defined in terms of the derivatives of the 

internal energy per unit volume with respect to the Lagrangian strains as [54-60] 

 

                            𝑇𝑖𝑗 = 𝐽−1𝛼𝑖𝑘𝛼𝑗𝑙𝜌0 (
𝜕𝑈

𝜕𝜂𝑘𝑙
)

𝒙,𝑆𝑚

.   (10) 

 

Note that when evaluated at x = X (the initial or un-deformed state) Eq.(10) yields 𝐴𝑖𝑗 =

𝑇𝑖𝑗(𝑿), the initial stresses.  

The Lagrangian or first Piola-Kirchhoff stress ij is a stress for which the force is 

referred to the deformed state x but the area is referred to the initial state X of the material 

[54-60].   It is shown in Appendix B that the Cauchy stresses are related to the first Piola–

Kirchhoff stresses as 

                       𝜎𝑖𝑘 = 𝐽𝛾𝑘𝑗𝑇𝑗𝑖 = 𝜌0𝛼𝑖𝑚 (
𝜕𝑈

𝜕𝜂𝑚𝑘
)

𝑥,𝑆𝑚

.   (11) 

or, equivalently, as 

                       𝑇𝑖𝑗 =
1

𝐽
𝛼𝑖𝑘𝜎𝑗𝑘    .    (12) 

 

Eqs.(11) and (12) reveal that the relationship between the Cauchy (Eulerian) and first Piola-

Kirchhoff (Lagrangian) stresses is more complicated than that of the Lagrangian and 

Eulerian mass densities, given by the first equality in Eqs.(3) and(4).  The complication 

results from the differing definitions of the Eulerian and Lagrangian stresses, in contrast to 

the single definition of the mass density as simply a mass per unit volume.  Note that when 

evaluated at x = X (the initial or un-deformed state) Eq.(11) yields 𝐴𝑖𝑗 = 𝑇𝑖𝑗(𝑿) = 𝜎𝑖𝑗(𝑿), 

the initial stress.   

Brillouin [24,25] preferred to use the Boussinesq stress tensor Bij, which is defined 

directly in terms of the derivatives of the internal energy per unit volume with respect to 

the displacement gradients.  The Boussinesq stress tensor is related to the first Piola–

Kirchhoff stress tensor as 
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                𝐵𝑖𝑗 =
𝜕𝜙

𝜕𝑢𝑖𝑗
= 𝜌0

𝜕𝑈

𝜕𝑢𝑖𝑗
= 𝜌0

𝜕𝜂𝑘𝑙

𝜕𝑢𝑖𝑗

𝜕𝑈

𝜕𝜂𝑘𝑙
= 𝜌0𝛼𝑖𝑘

𝜕𝑈

𝜕𝜂𝑘𝑗
= 𝜎𝑖𝑗 .  (13) 

 

From Eqs.(6) and (13) 

 

                 𝜎𝑖𝑗 = 𝐵𝑖𝑗 = 𝐴𝑖𝑗 +
1

2
𝐴𝑖𝑗𝑘𝑙𝑢𝑘𝑙 +

1

3!
𝐴𝑖𝑗𝑘𝑙𝑝𝑞𝑢𝑘𝑙𝑢𝑝𝑞 + ⋯ .  (14) 

   

 It is very important to note that for purely longitudinal, plane wave propagation 

along the Cartesian direction e1, the shear strains (𝜕𝑢𝑖 𝜕𝑋𝑗⁄ )
𝑖≠𝑗

= (𝑢𝑖𝑗)
𝑖≠𝑗

= 0,  𝑇𝑖𝑗 →

𝑇11 ,  𝜎𝑖𝑗 → 𝜎11 , 𝛼𝑖𝑗 → 𝛼11 = 1 + (𝜕𝑢1 𝜕𝑋1⁄ ) = 1 + 𝑢11 , and (1 𝐽⁄ ) = [1 +

(𝜕𝑢1 𝜕𝑋1)⁄ ]−1 = [1 + 𝑢11]−1 .  Hence, (1 𝐽)𝛼11⁄ = 1  and Eq.(12) simplifies without 

approximation to 

                                        𝑇11 =  𝜎11   .                     (15) 

 

Eq.(15) states that for longitudinal, plane wave propagation the Lagrangian and 

Eulerian stresses are exactly equal.  The equality results from the fact that the area 

components of the stresses transform such that the Lagrangian and Eulerian areas are equal 

during deformation.  For fluids, the Cauchy stress component 𝑇11 is related to the Eulerian 

pressure 𝑝1
𝐸 along e1 as 𝑇11 = −𝑝1

𝐸  and the first Piola-Kirchhoff stress component 𝜎11 is 

related to the Lagrangian pressure 𝑝1
𝐿 along e1 as 𝜎11 = −𝑝1

𝐿 [53-60].  Eq.(15) can thus be 

re-written as 

                 𝑇11 = −𝑝1
𝐸 = 𝜎11 = −𝑝1

𝐿 .          (16) 

 

Eq.(16) states that the Eulerian pressure 𝑝1
𝐸 is exactly equal to the Lagrangian pressure 𝑝1

𝐿 

for longitudinal, plane wave propagation along e1 in materials.  The subscript ‘1’ in Eq.(16) 

denotes that the pressure corresponding to longitudinal, plane wave propagation along e1 

is the i = j = 1 component of the second rank tensors 𝑇𝑖𝑗  and 𝜎𝑖𝑗 .  More generally, 

substituting J-1 from Eq.(5) and ik from Eq.(1) in Eq.(12) yields to second order in 𝑢𝑖𝑗  
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                                               𝑇𝑖𝑗 ≈ 𝜎𝑗𝑖 + (𝑢𝑖𝑘 − 𝛿𝑖𝑘𝑢𝑚𝑚)𝜎𝑗𝑘  .   (17)  

 

The equations-of-state for fluids are generally defined as functions of pressure in 

terms of the mass density 𝜌.  As shown in Section 2.3, 𝜌 refers to the mass density in the 

present state of deformation and has the same value whether referred to Lagrangian or 

Eulerian coordinates.  The pressure, in contrast to the mass density, is generally different 

in Lagrangian and Eulerian coordinates, except for the case of purely longitudinal wave 

propagation.  Since 𝜌 refers to the mass density in the present state of deformation, the 

pressure in the equations-of-state for fluids is quite naturally referred to Eulerian 

coordinates.  Thus, the equations-of-state for fluids, when expressed as functions of the 

mass density, are Eulerian equations.  For liquids, the equation-of-state is given as an 

expansion of the Eulerian pressure 𝑝𝐸 in terms of the mass density  as [32]   

 

                      𝑝𝐸 = 𝑝0 + 𝐴 (
𝜌−𝜌0

𝜌0
) +

1

2
𝐵 (

𝜌−𝜌0

𝜌0
)

2

+ ⋯  (18) 

 

where 𝑝0  is the initial hydrostatic pressure and A and B are the Fox-Wallace-Beyer 

coefficients.  For plane wave propagation along e1, where 𝑢11 ≠ 0 and 𝑢22 = 𝑢33 = 0, 

substituting 𝜌 = 𝜌0(1 + 𝑢11)−1  from Eq.(5) in Eq.(18) leads to an expression of the 

pressure in terms of the strain measure u11 as 

 

          𝑝1
𝐸 = 𝑝1

𝐿 = 𝑝0 − 𝐴𝑢11 + (
𝐵

2
+ 𝐴) 𝑢11

2 + ⋯     (19) 

 

where the relation 𝑝1
𝐸 = 𝑝1

𝐿 follows from Eq.(16) for plane waves. 

For liquids, the relationship between the Brugger elastic coefficients 𝐶𝑖𝑗𝑘𝑙⋯ and the 

Fox-Wallace-Beyer coefficients are given as [61] 

 

        𝐶1 = 𝐶2 = 𝐶3 = −𝑝0    (20) 

                𝐶11 = 𝐶22 = 𝐶33 = 𝐴 + 𝑝0       (21) 

       𝐶12 = 𝐶21 = 𝐶13 = 𝐶31 = 𝐶23 = 𝐶32 = 𝐴 − 𝑝0   (22) 

                        𝐶111 = 𝐶222 = 𝐶333 = −(𝐵 + 5𝐴 + 3𝑝0)   (23) 
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                        𝐶112 = 𝐶121 = 𝐶211 = 𝐶113 = 𝐶131 = ⋯ = −(𝐵 + 𝐴 − 𝑝0)  (24) 

                        𝐶123 = 𝐶132 = 𝐶213 = 𝐶231 = 𝐶312 = 𝐶321 = 𝐴 − 𝐵 − 𝑝0  (25) 

 

where p0 is the initial (hydrostatic) pressure and the Voigt contraction of indices (11 → 1, 

22 → 2, 33 → 3, 23 = 32 → 4, 13 = 31 → 5, 12 = 21 → 6) has been used in Eqs.(20)-(25) 

for the Brugger coefficients.  The Huang elastic coefficients 𝐴𝑖𝑗𝑘𝑙⋯  are assessed from 

Eqs.(7)-(9),(20)-(25) in terms of the Fox-Wallace-Beyer coefficients as (using Voigt 

contraction of indices) 

 

             𝐴1 = 𝐴2 = 𝐴3 = −𝑝0     (26) 

              𝐴11 = 𝐴22 = 𝐴33 = 𝐴       (27)  

                 𝐴12 = 𝐴21 = 𝐴13 = 𝐴31 = 𝐴23 = 𝐴32 = 𝐴 − 𝑝0   (28) 

                             𝐴111 = 𝐴222 = 𝐴333 = −𝐵 − 2𝐴    (29) 

                  𝐴112 = 𝐴121 = 𝐴211 = 𝐴113 = 𝐴131 = ⋯ = −𝐵   (30) 

                      𝐴123 = 𝐴132 = 𝐴213 = 𝐴231 = 𝐴312 = 𝐴321 = 𝐴 − 𝐵 − 𝑝0   . (31) 

 

The equation-of-state for ideal gases is given as 𝑝𝐸 = 𝑝0(𝜌 𝜌0⁄ )𝛾, where  is the 

ratio of specific heats.  The relationships between the Huang coefficients and the 

corresponding elastic parameters for ideal gases are obtained by setting 𝐴 = 𝑝0𝛾 and 𝐵 =

𝑝0𝛾(𝛾 − 1) in Eqs.(27)-(31).      

 

2.5. Time-averaging of Lagrangian and Eulerian quantities 

Since acoustic radiation pressure is a time-averaged, steady-state property of the 

wave, it is useful to define the time-average of a continuous periodic function 𝑓(𝑡) under 

steady-state conditions by the operation 

 

     〈𝑓(𝑡)〉 = lim
𝑡→∞

1

𝑡
∫ 𝑓(𝑡′)𝑑𝑡′

𝑡

0
    (32) 

 

where the angular bracket denotes time-averaging of the function enclosed in the bracket.  

Note that time-averaging the Lagrangian quantity 〈𝑞𝐿(𝑋, 𝑡)〉  occurs while holding the 
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Lagrangian coordinate fixed and time-averaging the Eulerian quantity 〈𝑞𝐸(𝑥, 𝑡)〉 occurs 

while holding the Eulerian coordinate constant.  For a fixed Lagrangian coordinate X, the 

first equality in Eq.(4) yields 〈𝑞𝐿(𝑋, 𝑡)〉 = 〈𝑞𝐸(𝑥, 𝑡)|𝑥(𝑡)=𝑋+𝑢(𝑡)〉 = 〈𝑞𝐸(𝑋, 𝑡)〉 , where 

〈𝑞𝐸(𝑋, 𝑡)〉 results from the fact that for sinusoidal waves u(t) averages to zero and x(t) 

averages to X.   For a fixed Eulerian coordinate x, the first equality in Eq.(3) yields 

〈𝑞𝐸(𝑥, 𝑡)〉 = 〈𝑞𝐿(𝑋, 𝑡)|𝑋(𝑡)=𝑥−𝑢(𝑡)〉 = 〈𝑞𝐿(𝑥, 𝑡)〉 , where 〈𝑞𝐿(𝑥, 𝑡)〉  results from the fact 

that for sinusoidal waves u(t) averages to zero and X(t) averages to x.  When x and X 

correspond to the same point Y in Cartesian space, then x = X = Y and 〈𝑞𝐿(𝑌, 𝑡)〉 =

〈𝑞𝐸(𝑌, 𝑡)〉.    

It is noted that the quantity q in Eqs.(3) and (4) is assumed to be a scalar quantity 

defined by a single definition.  The relationship between the time-averaged Cauchy 

(Eulerian) stress and the first Piola–Kirchhoff (Lagrangian) stress is more complicated, 

since stress is not a scalar but, rather, a second rank tensor, defined as a force per unit area 

for which the area is defined differently for the two stresses.  The force in the definition of 

both stresses refers to Eulerian coordinates (present or deformed state) but the area in the 

first Piola–Kirchhoff stress refers to Lagrangian coordinates (initial or un-deformed state) 

and the area in the Cauchy stress refers to Eulerian coordinates.  The relationship between 

the two stresses is thus governed by the transformation between the Lagrangian and 

Eulerian areas and the time-averaging must be assessed from the equation, obtained from 

finite deformation theory, linking the quantities.  For plane, longitudinal acoustic stresses 

such that 11 = T11 at a given point in Cartesian space,  〈𝜎11〉 = 〈𝑇11〉, exactly, resulting 

from the fact that the areas in the two stresses transform such that the areas are equal in 

magnitude.  In other cases, Eqs.(12) or (17) must be used in assessing the time-averaged 

relationship between Eulerian and Lagrangian stresses.      

 Finally, it is noted that since ij is the force per unit area referred to the Lagrangian 

coordinates, 〈𝜎𝑖𝑗〉 is the Lagrangian radiation stress (also known as the first Piola-Kirchhoff 

radiation stress).  Since Tij is the force per unit area referred to the Eulerian coordinates, 

〈𝑇𝑖𝑗〉 is quite properly the Eulerian radiation stress (or Cauchy radiation stress).  It is 

generally assumed in the acoustics literature that for plane wave propagation the radiation 

stress in Eulerian coordinates is not 〈𝑇𝑖𝑗〉 but, rather, the momentum flux density 〈𝜌𝑣𝑖𝑣𝑗〉.  
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It is shown in Section 3.2.2 that this assumption is based on an incorrect interpretation, 

originally proposed by Brillouin [24,25], of the terms in what is now known as the Brillouin 

stress tensor.  The identification of the momentum flux density with the Eulerian radiation 

stress for plane waves has also led to a considerable misunderstanding of acoustic radiation 

stress in the literature.       

      

3. Acoustic radiation pressure for laterally confined, plane waves 

It has been assumed since the work of Hertz and Mende [26] that for fluids the 

radiation pressure in an acoustic beam is highly dependent on whether motion of fluid 

normal to the wave propagation direction is allowed – i.e., on whether the acoustic beam 

is laterally confined or laterally unconfined.  Brillouin [24,25], Hertz and Mende [26], and 

Beyer [32,47] assess the radiation pressure by assuming a longitudinal, plane wave acoustic 

beam of cylindrical cross-section incident on a target in laterally confined and laterally 

unconfined volumes.  Their derivations are questionable for several reasons including an 

incorrect assessment of the relationship between Lagrangian and Eulerian quantities based 

on the expansions given in the second equality of Eqs.(3) and (4).  Moreover, as pointed 

out by Beissner [48], a beam of finite cross-section is three-dimensional and, thus, 

diffracted, which leads to additional issues in assessing the radiation pressure.  The seminal 

papers [23-28,38-40] on acoustic radiation pressure, however, assume idealized one-

dimensional, plane wave propagation.  It will be shown below that these papers are 

responsible for much of the confusion and misunderstanding surrounding acoustic 

radiation pressure.  Since the ground-breaking work on acoustic radiation pressure 

considered only plane waves [23-28,38-40], it is appropriate to focus on derivations of the 

radiation pressure for plane wave propagation in inviscid fluids, beginning with laterally 

confined, plane wave propagation.       

 

3.1.  Laterally confined, plane wave propagation 

It is instructive first to consider wave propagation in Lagrangian coordinates such 

that the relationship between the Lagrangian stresses ij and the displacement gradients 

(strains) uij is given by Eq.(14).  Lateral confinement of a longitudinal, plane wave 

propagating along e1 means not only that the shear displacements gradients (𝑢𝑖𝑗)
𝑖≠𝑗

= 0  
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but u22 = u33 = 0 as well.  Eq.(14) thus gives the stress-strain relationships in the Cartesian 

directions e1, e2, and e3, respectively, as 

 

              𝜎11 = (𝜎11)0 + 𝐴11𝑢11 +
1

2
𝐴111(𝑢11)2 + ⋯  (33) 

 

   𝜎22 = (𝜎22)0 + 𝐴21𝑢11 +
1

2
𝐴211(𝑢11)2 + ⋯  (34) 

 

   𝜎33 = (𝜎33)0 + 𝐴31𝑢11 +
1

2
𝐴311(𝑢11)2 + ⋯  (35) 

 

where the Voigt contraction of has been used in Eqs.(33)-(35) for the Huang coefficients.  

Eqs.(33)-(35) hold for all materials under laterally confined conditions.  For isotropic 

materials, A21 = A31 and A211 = A311.  For fluids  (𝜎11)0 = (𝜎22)0 = (𝜎33)0 = −𝑝0 where 

𝑝0 is the initial (hydrostatic) pressure. 

 For nonlinear, longitudinal, plane wave propagation along e1 the relationship 

between the displacement gradient u11 in Eqs.(33)-(35)  and the particle velocity (𝜕𝑢1 𝜕𝑡⁄ ) 

is given by the compatibility condition [42] 

 

                   
𝜕𝑢1

𝜕𝑋1
= 𝑢11 = −

1

𝑐0

𝜕𝑢1

𝜕𝑡
−  

1

4𝑐0
2

𝐴111

𝐴11
(

𝜕𝑢1

𝜕𝑡
)

2

 .   (36) 

 

Substituting Eq.(36) in Eq.(33) and time-averaging yield the Rayleigh radiation stress 

(mean excess stress) along e1 in Lagrangian coordinates as 

 

                 〈𝜎11
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 = 〈𝜎11〉 − (𝜎11)0 =

1

4

𝐴111

𝐴11
〈𝜌0 (

𝜕𝑢1

𝜕𝑡
)

2
〉 =

1

4

𝐴111

𝐴11
〈2𝐾〉     (37)  

 

where  〈𝐾〉 = (1 2⁄ ) 〈𝜌0 (
𝜕𝑢1

𝜕𝑡
)

2
〉 is the mean kinetic energy density of the propagating 

wave.  Since from Eq.(16) 𝜎11 = −𝑝1
𝐿 = 𝑇11 = −𝑝1

𝐸, the Rayleigh radiation stress (mean 

excess stress) in Lagrangian coordinates 〈𝜎11
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 is also equal to the Rayleigh radiation 

stress in Eulerian coordinates  〈𝑇11
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉, i.e.    
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                〈𝜎11
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 = 〈𝑇11

𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 = 〈𝑇11〉 − (𝑇11)0 =
1

4

𝐴111

𝐴11
〈2𝐾〉  .      (38) 

 

It is noted that the Rayleigh radiation pressure has been traditionally defined as [47] 

“the difference between the average pressure at a surface moving with the particle (the 

mean Lagrangian pressure 〈𝑝1
𝐿〉) and the pressure that would have existed in the field of 

the same mean density at rest, p0.”  This definition of the Rayleigh radiation pressure is 

misleading, since, as shown in Section 2.2, a moving surface is equally well represented in 

either Lagrangian or Eulerian coordinates.  The assumption that moving surfaces are 

represented only by Lagrangian coordinates has led to considerable confusion, erroneous 

assumptions, and problematic arguments in assessing acoustic radiation pressure, as shown 

in Section 4.2.         

For liquids with initial hydrostatic pressure 𝑝0 = −(𝜎11)0 = −(𝑇11)0, Eqs.(27) and 

(29) yield (𝐴111 𝐴11⁄ ) = −[(𝐵 𝐴⁄ ) + 2].  Eqs.(16), (37), and (38) state that the excess 

Eulerian pressure and the excess Lagrangian pressure are equal along the wave propagation 

direction e1.  Thus, the Rayleigh radiation pressure in liquids is obtained as   

 

                          〈𝑝1
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 = 〈𝑝1

𝐿〉 − 𝑝0 = 〈𝑝1
𝐸〉 − 𝑝0 =

1

4
(

𝐵

𝐴
+ 2) 〈2𝐾〉  .   (39) 

 

The Rayleigh radiation pressure along e1 for ideal gases can be obtained by substituting 

B/A = ( – 1), where is the ratio of specific heats, in Eq.(39) to obtain  

 

                          〈𝑝1
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 = 〈𝑝1

𝐿〉 − 𝑝0 = 〈𝑝1
𝐸〉 − 𝑝0 =

1

4
(𝛾 + 1)〈2𝐾〉.  (40) 

 

In the directions e2 and e3, normal to the wave propagation direction, the Lagrangian 

radiation stresses are assessed by substituting the compatibility condition, Eq.(36), in 

Eqs.(34) and (35), and time-averaging to obtain for isotropic materials with initial stresses 

(𝜎22)0 = (𝜎33)0   
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                   〈𝜎22〉 − (𝜎22)0 = 〈𝜎33〉 − (𝜎33)0 = (
1

2

𝐴211

𝐴11
−

1

4

𝐴21𝐴111

𝐴11
2 ) 〈2𝐾〉  .   (41)  

 

For liquids, writing 𝜎22 = 𝜎33 = −𝑝2
𝐿 = −𝑝3

𝐿 and substituting Eqs.(26)-(31) for 𝐴11, 𝐴21, 

𝐴111, and 𝐴211 in Eq.(41) yield 

 

  〈𝑝2
𝐿〉 − 𝑝0 = 〈𝑝3

𝐿〉 − 𝑝0 =
1

4
(

𝐵

𝐴
− 2) 〈2𝐾〉 +

1

4

𝑝0

𝐴
(

𝐵

𝐴
+ 2) 〈2𝐾〉 ≈

1

4
(

𝐵

𝐴
− 2) 〈2𝐾〉. (42) 

 

where the last equality in Eq.(42) results for p0 << A, as is the usual case for liquids.   

It is generally assumed in the literature that for ideal gases the Lagrangian radiation 

pressures can be obtained simply by substituting the relation B/A = ( – 1) in the equations 

for liquids. Substituting B/A = ( – 1) in the last equality in Eq.(42) for liquids leads to 

 

        〈𝑝2
𝐿〉 − 𝑝0 = 〈𝑝3

𝐿〉 − 𝑝0 =
1

4
(𝛾 − 3)〈2𝐾〉    (43) 

 

for the Lagrangian radiation pressures in directions e2 and e3.  The substitution overlooks 

the contribution of the hydrostatic pressure 𝑝0  as a multiplicative scaling factor in the 

equation-of-state for ideal gases, 𝑝𝐸 = 𝑝0(𝜌 𝜌0⁄ )𝛾, which renders the simple substitution 

B/A = ( – 1) inadequate.  It is more proper to set 𝐴 = 𝑝0𝛾  and 𝐵 = 𝑝0𝛾(𝛾 − 1)  in 

Eqs.(27)-(31) for the Huang coefficients and substitute the resulting Huang coefficients in 

Eq.(41) to get 

 

                  〈𝑝2
𝐿〉 − 𝑝0 = 〈𝑝3

𝐿〉 − 𝑝0 =
1

4
(𝛾 − 3)〈2𝐾〉 +

1

4

(𝛾+1)

𝛾
〈2𝐾〉  .   (44) 

 

It is noted that Eq.(44) contains the term  
1

4

(𝛾+1)

𝛾
〈2𝐾〉 in addition to the traditionally derived 

term 
1

4
(𝛾 − 3)〈2𝐾〉.   

The excess Eulerian stresses along e2 and e3 are obtained from Eq.(17) for isotropic 

materials as (assuming equal initial stresses (pressures) in directions e2 and e3)   
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          〈𝑇22〉 − (𝑇22)0 =  〈𝑇33〉 − (𝑇33)0 ≈ 〈𝜎22〉 − (𝜎22)0 − 〈𝑢11𝜎22〉 

           (45) 

                                             = 〈𝜎33〉 − (𝜎33)0 − 〈𝑢11𝜎33〉 

 

where the initial stress relation (𝑇22)0 = (𝜎22)0  or (𝑇33)0 = (𝜎33)0  is subtracted from 

both sides of Eq.(17).  For liquids,  

 

                                 〈𝑢11𝜎22〉 = 〈𝑢11𝜎33〉 ≈ 〈(𝐴 − 𝑝0)𝑢11
2 〉 ≈ 〈2𝐾〉   (46) 

 

where the last equality in Eq.(46) is obtained for p0 << A.  Substituting Eq.(46) in Eq.(45) 

and writing  𝜎11 = −𝑝1
𝐿 ,  𝑇11 = −𝑝1

𝐸  yield 

 

                                     〈𝑝2
𝐸〉 − 𝑝0 = 〈𝑝3

𝐸〉 − 𝑝0 =
1

4
(

𝐵

𝐴
+ 2) 〈2𝐾〉  .    (47) 

 

Eq.(47) shows that, in contrast to the case for the Lagrangian radiation pressures, for p0 << 

A, the radiation pressures in Eulerian coordinates are essentially equal along directions e1, 

e2, and e3 for laterally confined, plane wave propagation in liquids. 

For ideal gases, 〈𝑢11𝜎22〉 = 〈𝑢11𝜎33〉 ≈ 〈(𝑝0𝛾 − 𝑝0)𝑢11
2 〉 = (1 − 𝛾−1)〈2𝐾〉 .  

Substituting this result in Eq.(45) leads to   

   

           〈𝑝2
𝐸〉 − 𝑝0 = 〈𝑝3

𝐸〉 − 𝑝0 =
1

4
(𝛾 + 1)〈2𝐾〉 +

1

4
(

𝛾−3

𝛾
) 〈2𝐾〉 .      (48) 

 

It is noted that Eq.(48) contains the term  
1

4

(𝛾−3)

𝛾
〈2𝐾〉 in addition to the term 

1

4
(𝛾 + 1)〈2𝐾〉.  

Again, the extra term results from the presence of the initial pressure p0 as a multiplicative 

scaling factor in the equation-of-state for ideal gases.  

 

3.2. Lateral confinement and the Boltzmann-Ehrenfest Adiabatic Principle 

 Brillouin [24.25] approached the problem of acoustic radiation stress by applying 

the Boltzmann-Ehrenfest Principle of Adiabatic Invariance to longitudinal, plane wave 

propagation.  Since the derivation of Brillouin has been so influential in establishing the 
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foundational concepts of acoustic radiation stress, it is worthwhile to re-examine his 

approach in some detail.  The Boltzmann-Ehrenfest Adiabatic Principle [62,63] states that 

if the constraints of a periodic system are allowed to vary sufficiently slowly, then the 

product of the mean (time-averaged, steady-state) kinetic energy 〈𝐾∗〉 and the period T of 

the system is an adiabatic invariant or constant of the motion such that the variation 

𝛿(〈𝐾∗〉𝑇) = 0 or   

                         𝛿〈𝐾∗〉 = −〈𝐾∗〉
𝛿𝑇

𝑇
  .    (49) 

 

3.2.1. Acoustic radiation stress and pressure for laterally confined, plane waves in 

Lagrangian coordinates 

It is instructive to consider first the derivation in Lagrangian coordinates for 

laterally confined, longitudinal, plane wave propagation along e1.  In Lagrangian 

coordinates, the virial theorem states that [64,65] 

 

                〈𝐾〉 =
1

2
〈

𝜕𝜙

𝜕𝑢11
𝑢11〉 =

1

2
〈𝜎11𝑢11〉  .   (50) 

 

where for longitudinal plane waves, the potential energy density corresponding to the 

excess stress [𝜎11 − (𝜎11)0] , (𝜎11)0 = 𝐴1 , is obtained from Eq.(6) by letting (𝜙 −

𝐴1𝑢11) → 𝜙′, dropping the prime on 𝜙′, and writing 

 

           𝜙 = 𝜌0𝑈(𝑋, 0, 𝑆) +
1

2
𝐴11𝑢11

2 +
1

6
𝐴111𝑢11

3 + ⋯         (51) 

 

The relationship between the mean kinetic energy density and the mean internal (potential) 

energy density for plane waves can be established by substituting Eq in Eq.(50) to 

obtain a power series expansion of Eq.(50), and then solving Eq.(51) for 𝐴11𝑢11
2  and 

iteratively substituting for 𝑢11
2  in the terms of the expanded Eq.(50) to obtain 

 

                                              〈𝐾〉 = 〈𝜙〉 +
1

6

𝐴111

𝐴11
〈𝜙𝑢11〉 + ⋯     (52) 
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where the constant term 𝜌0𝑈(𝑋, 0, 𝑆) has been dropped, since it makes no contribution to 

the kinetic energy.  The mean total energy density 〈𝐸〉 for nonlinear plane waves is then 

 

             〈𝐸〉 = 〈𝐾〉 + 〈𝜙〉 = 2〈𝐾〉 −
1

6

𝐴111

𝐴11
〈𝜙𝑢11〉 + ⋯  (53) 

 

where the last equality follows from Eq.(52).  It is interesting to note from Eq.(53) that for 

nonlinear waves the total average energy density 〈𝐸〉 is not exactly equal to 〈2𝐾〉. 

According to the Boltzmann-Ehrenfest Adiabatic Principle [62,63], a slow virtual 

variation q* in a constraint q* (generalized displacement) of a conservative, oscillatory 

system leads to a change in the system configuration that results in a change 𝛿〈𝐸∗〉 in the 

mean (time-averaged, steady-state) total energy 〈𝐸∗〉  of the system.  The change in the 

mean total energy is quantified by the product of the generalized reaction force Q* and 

virtual constraint variation q* such that  𝛿〈𝐸∗〉 = 𝑄∗𝛿𝑞∗.  For longitudinal, acoustic plane 

wave propagation, the generalized reaction force in Lagrangian coordinates is the mean 

excess radiation stress 〈𝜎11 − (𝜎11)0〉 = 〈𝜎11〉 − (𝜎11)0 , the constraint (generalized 

displacement) is the displacement gradient 𝑢11, the mean kinetic energy 〈𝐾∗〉 corresponds 

to the mean kinetic energy density 〈𝐾〉, and the mean total energy 〈𝐸∗〉 corresponds to the 

mean total energy density 〈𝐸〉.  Thus, for plane wave propagation the relation 𝛿〈𝐸∗〉 =

𝑄∗𝛿𝑞∗ becomes 

 

          (〈𝜎11〉 − (𝜎11)0)𝛿𝑢11 = 𝛿〈𝐸〉 = 𝛿〈2𝐾〉 −
1

6

𝐴111

𝐴11
𝛿〈𝜙𝑢11〉 + ⋯    (54) 

 

where the last equality in Eq.(54) follows from Eq.(53).   

Writing 2〈𝐾∗〉 → 2〈𝐾〉 in Eq.(49) and substituting in Eq.(54) lead, to first order in 

the nonlinearity, to the relation for the acoustic radiation stress  

  

                              〈𝜎11〉 − (𝜎11)0 = −〈2𝐾〉 (
1

𝑇

𝛿𝑇

𝛿𝑢11
)

0
−

1

6

𝐴111

𝐴11

𝛿〈𝜙𝑢11〉

𝛿𝑢11
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           (55) 

                       = −〈2𝐾〉 (
1

𝑇

𝛿𝑇

𝛿𝑢11
)

0
−

1

4

𝐴111

𝐴11
〈2𝐾〉 

 

where the subscripted ‘0’ denotes evaluation at u11 = 0.  The factor  
𝛿〈𝜙𝑢11〉

𝛿𝑢11
  in Eq.(55) is 

evaluated as 

                              
𝛿〈𝜙𝑢11〉

𝛿𝑢11
= 〈𝜙〉 + 〈

𝜕𝜙

𝜕𝑢11
𝑢11〉 ≈

3

2
〈2𝐾〉 ,      (56) 

 

where the last equality in Eq.(56) is a linear approximation.  The linear approximation in 

Eq.(56) is sufficient here, since the factor containing 
𝛿〈𝜙𝑢11〉

𝛿𝑢11
 in Eq.(55) is first order in the 

nonlinearity – the order retained in Eq.(55).  It is noted that Brillouin omitted in his 

derivation the nonlinear contribution corresponding to the last term in Eq.(55). 

It is extremely important to note that the radiation stress given by Eq.(55) is the 

Lagrangian radiation stress.  The fractional change in the oscillation period T-1T/u11 with 

respect to the variation u11 can be easily assessed from the fractional change in the natural 

velocity W.  The natural velocity is the velocity defined as the ratio of the length of the 

sound path in the un-deformed state to the propagation time in the deformed state [55-57].  

Since the path length in the un-deformed state is constant, only the propagation time in the 

deformed state plays a role in assessing the fractional variation in the system period when 

using the natural velocity for the assessment.  The natural velocity is the velocity referred 

to the Lagrangian coordinates and is obtained from Eq.(14) as [55-57] 

 

                𝑊2 =
1

𝜌0

𝜕𝜎11

𝜕𝑢11
=

1

𝜌0
(𝐴11 + 𝐴111𝑢11 + ⋯ ) .  (57) 

 

The fractional change in the period (𝑇−1𝛿𝑇/𝛿𝑢11)0 is assessed from the fractional change 

in the natural velocity as 

 

                    (
1

𝑇

𝛿𝑇

𝛿𝑢11
)

0
= − (

1

𝑊

𝛿𝑊

𝛿𝑢11
)

0
= −

1

2

𝐴111

𝐴11
     .    (58) 
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The acoustic radiation stress in Lagrangian coordinates is evaluated from Eqs.(55), (56), 

and (58) as 

                            〈𝜎11
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 = 〈𝜎11〉 − (𝜎11)0 =

1

4

𝐴111

𝐴11
〈2𝐾〉 .  (59) 

 

Eq.(59) is identical to Eq.(37) obtained from finite deformation theory.  

For liquids with initial (hydrostatic) pressure p0, Eq.(16) yields that the excess 

Eulerian pressure and the excess Lagrangian radiation pressure are equal along the wave 

propagation direction e1 and Eqs.(27) and (29) yield (𝐴111 𝐴11⁄ ) = −[(𝐵 𝐴⁄ ) + 2].  Thus, 

for liquids Eq.(59) gives 

 

              〈𝑝1
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 = 〈𝑝1

𝐿〉 − 𝑝0 = 〈𝑝1
𝐸〉 − 𝑝0 =

1

4
(

𝐵

𝐴
+ 2) 〈2𝐾〉    (60) 

 

in agreement with Eq.(39), obtained from finite deformation theory.  For ideal gases, 

substituting B/A = ( – 1) in Eq.(60) leads to  

 

  〈𝑝1
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 = 〈𝑝1

𝐿〉 − 𝑝0 = 〈𝑝1
𝐸〉 − 𝑝0 =

1

4
(𝛾 + 1)〈2𝐾〉  (61) 

 

in agreement with Eq.(40), obtained from finite deformation theory. 

In directions e2 and e3, the derivation of the radiation pressure from the Boltzmann-

Ehrenfest Adiabatic Principle is less straightforward and deviates somewhat from the 

conditions under which the Principle is strictly applicable, which in the present case 

requires a slow, virtual variation in the displacement gradient 𝑢11, serving as the constraint 

parameter (generalized displacement) directly affecting the system period.  It is, 

nonetheless, instructive to apply the Principle to an assessment of the radiation pressure 

along e2 and e3.  The lateral confinement condition, u22 = u33 = 0, means that although a 

variation in u11 must lead to variations in 22 and 33 in accordance with Eqs.(34) and (35), 

no sound wave actually propagates in directions e2 and e3 and no constraint parameter 

(generalized displacement) along those directions plays a dynamically active role in 

affecting the system period.  However, the variations of 22 and 33 occur in a confined 

volume in which the only allowed volume change results from variations in u11.  The 
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confinement necessarily leads to a change in the natural sound velocities along directions 

e2 and e3.  In analogy to the natural velocity W along e1, which is defined as 𝑊2 =

(𝜕𝜎11 𝜕𝑢11⁄ )𝑢11=0 = (𝐴11 𝜌0⁄ ), it is appropriate to define the natural velocities W2 and W3 

along directions e2 and e3, respectively, for isotropic materials as 

 

    𝑊2
2 = 𝑊3

2 = (𝜕𝜎22 𝜕𝑢11⁄ )𝑢11=0 = (𝜕𝜎33 𝜕𝑢11⁄ )𝑢11=0 = (𝐴21 𝜌0⁄ ) = (𝐴31 𝜌0⁄ ) .  (62)  

 

The elastic coefficients A21 and A31 serve to connect the driving dynamics along e1 with 

dynamics along e2 and e3.   

For isotropic materials, the Boltzmann-Ehrenfest equation along e2 and e3 is 

correspondingly written as 

 

     〈𝜎22〉 − (𝜎22)0 = 〈𝜎33〉 − (𝜎33)0 = 〈2𝐾〉 (
1

𝑊2

𝛿𝑊2

𝛿𝑢11
)

0
−

1

6

𝐴111

𝐴11

𝛿〈𝜙𝑢11〉

𝛿𝑢11
    

           (63)               

                                                  = (
1

2

𝐴211

𝐴21
−

1

4

𝐴111

𝐴11
) 〈2𝐾〉   

 

where the nonlinear contribution from the driving wave along e1 is again given as 

1

6

𝐴111

𝐴11

𝛿〈𝜙𝑢11〉

𝛿𝑢11
.  As anticipated, Eq.(63) is quite similar but not identical to Eq.(41).  

However, for liquids such that p0 << A, Eq.(63) and Eqs.(26)-(31) yield the Lagrangian 

radiation pressure along e2 and e3  as 

 

                             〈𝑝2
𝐿〉 − 𝑝0 = 〈𝑝3

𝐿〉 − 𝑝0 =
1

4
(

𝐵

𝐴
− 2) 〈2𝐾〉 .  (64) 

  

Eq.(64) is in agreement with Eq.(42), obtained from finite deformation theory.  For ideal 

gases, substituting Eqs.(26)-(31) and the relations 𝐴 = 𝑝0𝛾  and 𝐵 = 𝑝0𝛾(𝛾 − 1)  in 

Eq.(63) leads to  

                       〈𝑝2
𝐿〉 − 𝑝0 = 〈𝑝3

𝐿〉 − 𝑝0 =
1

4
(𝛾 − 3)〈2𝐾〉 +

1

2
〈2𝐾〉 .  (65) 

 

The first terms on the right-hand sides of Eqs.(65) and (44) are identical.  However, the 
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term 
1

2
〈2𝐾〉 in Eq.(65) does not agree with the term 

1

4

(𝛾+1)

𝛾
〈2𝐾〉 obtained in Eq.(44).  This 

results from the difference between Eqs.(41) and (63).  As stated above, the derivation of 

the radiation pressure in directions e2 and e3 from the Boltzmann-Ehrenfest Adiabatic 

Principle deviates from the conditions under which the Principle is strictly applicable.  

Thus, the results of Eq.(65) are not completely consistent with the results of finite 

deformation theory and must be taken with caution, giving deference to Eq.(44).  

 It is noted that if the relation B/A = ( – 1) is substituted directly in Eq.(64), Eq.(43) 

is obtained.  This is the result obtained by Brillouin in his application of the Boltzmann-

Ehrenfest Adiabatic Principle.  Eqs.(60) and (61), Eq.(64), and Eq.(43) played a significant 

role in the early theoretical development of acoustic radiation pressure, since the results 

given on the right-hand side of the equations are exactly the results obtained by Brillouin 

(after correcting for the last term in Eq.(55), which was omitted by Brillouin in his 

derivation).  However, Brillouin incorrectly assumed that the equations refer to Eulerian 

coordinates rather than to Lagrangian coordinates, as shown in the present derivations.  It 

is crucial to understand how Brillouin came to such an assumption, since the assumption 

has led to a deep foundational misunderstanding of acoustic radiation stress and pressure.        

 

3.2.2. Acoustic Radiation stress and pressure in Lagrangian coordinates via the true 

velocity 

 The true velocity c is the velocity defined as the ratio of the length of the sound 

path in the deformed state to the propagation time in the deformed state.  The true velocity 

is related to the natural velocity W as 𝑊 =
ℓ0

ℓ
𝑐, where ℓ0 is the length of material in the 

un-deformed state and ℓ is the length of material in the deformed state [52-54,57].  It is 

shown in Appendix B, Eq.(B6), that the ratio 𝑅 =
ℓ0

ℓ
 is obtained as 𝑅 =

ℓ0

ℓ
=

[(𝛿𝑖𝑗 − 2
𝜕𝑢𝑖

𝜕𝑋𝑗
) 𝑁𝑖𝑁𝑗]

1/2

 , where Ni are the Cartesian components of the unit vector normal 

to the material surface in the un-deformed (initial) state.  Thus, the true velocity and the 

natural velocity are related as 
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           𝑊 =
ℓ0

ℓ
𝑐 = [(𝛿𝑖𝑗 − 2

𝜕𝑢𝑖

𝜕𝑋𝑗
) 𝑁𝑖𝑁𝑗]

1/2

𝑐   .   (66) 

 

In terms of variations in the true velocity (
1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
 the variation of the system period T is 

obtained from Eqs.(58) and (66) as  

 

  (
1

𝑇

𝛿𝑇

𝛿𝑢11
)

0
= − (

1

𝑊

𝛿𝑊

𝛿𝑢11
)

0
= − (

1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
− (

1

𝑅

𝛿𝑅

𝛿𝑢11
)

0
= − (

1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
+ 1 = −

1

2

𝐴111

𝐴11
     (67) 

        

where [𝑅−1(𝛿 𝑅 𝛿𝑢11⁄ )]0 = −1.  It is significant to point out that the terms in Eq.(67) are 

evaluated at 𝑢11 = 0, i.e., at the Lagrangian coordinates X.   

The Lagrangian radiation stress for laterally confined, longitudinal, plane waves 

along e1 can be assessed in terms of the true velocity by substituting Eq.(67) in Eq.(55) to 

obtain 

                                〈𝜎11〉 − (𝜎11)0 = 〈2𝐾〉 (
1

𝑊

𝛿𝑊

𝛿𝑢11
)

0
−

1

4

𝐴111

𝐴11
〈2𝐾〉   

(68) 

            = 〈2𝐾〉 (
1

𝑐

𝛿𝑐

𝛿𝑢11
− 1)

0
−

1

4

𝐴111

𝐴11
〈2𝐾〉  . 

 

It is very important to recognize that Eq.(68) is an equation in Lagrangian coordinates.  

Although the path length for the true velocity c refers to the deformed state, the term 

(
1

𝑐

𝛿𝑐

𝛿𝑢11
− 1)

0
in the last equality in Eq.(68) is evaluated at the un-deformed state, i.e., at the 

Lagrangian coordinate position X, where 𝑢11 = 0.  Brillouin [24,25] identified the term  

〈2𝐾〉 = −〈2𝐾〉 (
1

𝑅

𝛿𝑅

𝛿𝑢11
)

0
 in Eq.(68) as the momentum flux density 〈𝜌𝑣1𝑣1〉 and identified 

the term 〈2𝐾〉 (
1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
 as the mean excess Cauchy (Eulerian) stress, which for fluids is 

generally called the ‘mean excess Eulerian pressure.’  Since c2 is obtained for fluids from 

the Eulerian pressure 𝑝𝐸 as 𝑐2 = 𝜕𝑝𝐸 𝜕𝜌⁄ , which is a Eulerian expression, it is, indeed, 

tempting to assume that 〈2𝐾〉 (
1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
 corresponds to the mean excess radiation pressure 

in Eulerian coordinates, but the term is evaluated at 𝑢11 = 0 , i.e., at the Lagrangian 
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coordinates X.  Moreover, taking the derivative of c with respect to 𝑢11 requires that c be 

expressed in terms of 𝑢11.  Since 𝑢11 is defined with respect to the Lagrangian coordinates, 

the expression of c in terms of 𝑢11 allows c to be evaluated with respect to Lagrangian 

coordinates.  This does not imply that c is the natural velocity; c is still the true velocity 

but simply evaluated with respect to the Lagrangian coordinates.  This means that 

〈2𝐾〉 (
1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
 is also referred to the Lagrangian coordinates and confirms that Eq.(68) is 

a Lagrangian equation.    

Further, Eq.(68) shows that 〈2𝐾〉 (
1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
 cannot be the mean excess Cauchy 

(Eulerian) stress 〈𝑇11〉 − (𝑇11)0, since Eq.(16) already establishes that 〈𝑇11〉 − (𝑇11)0 =

〈𝜎11〉 − (𝜎11)0 .  The term  〈2𝐾〉 (
1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
 cannot be equal to both the mean excess 

Lagrangian stress and the mean excess Eulerian stress, since the term 〈2𝐾〉 =

−〈2𝐾〉 (
1

𝑅

𝛿𝑅

𝛿𝑢11
)

0
 also appears in Eq.(68).  Rather, 〈2𝐾〉 (

1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
 is simply the contribution 

to the Lagrangian radiation stress along e1 resulting from the change in the true sound 

velocity, when the variation in the system period is assessed using the true velocity.  The 

radiation stress (pressure) in Eulerian coordinates is obtained from the time-averaged 

Lagrangian stress (pressure) via the transformation given by Eqs.(12) or (17), which for 

fluids leads to Eqs.(39), (40), (47), and (48).   

It is seen from Eqs.(67) and (68) that the term  〈2𝐾〉 = −〈2𝐾〉 (
1

𝑅

𝛿𝑅

𝛿𝑢11
)

0
 , which 

Brillouin identified as the momentum flux density, is simply the contribution to the 

Lagrangian radiation stress along e1 resulting from the variation in the acoustic path length 

in response to the virtual variation in the strain u11, when the variation in the system period 

is assessed using the true velocity.  The momentum flux density appears in acoustical 

equations in Eulerian coordinates as a consequence of the convective derivative in the 

Eulerian equations of motion.  It does not appear in acoustical equations in Lagrangian 

coordinates, since the convective derivative does not appear in the Lagrangian equations 

of motion.  Since Eq.(68) provides an assessment of the acoustic radiation stress in 

Lagrangian coordinates, it follows that 〈2𝐾〉 = −〈2𝐾〉 (
1

𝑅

𝛿𝑅

𝛿𝑢11
)

0
 cannot be the momentum 

flux density.  
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Adding to the confusion generated by the incorrect identification of the 

〈2𝐾〉 (
1

𝑐

𝛿𝑐

𝛿𝑢11
)

0
 and 〈2𝐾〉 (

1

𝑅

𝛿𝑅

𝛿𝑢11
)

0
 terms in Eqs.(67) and (68), Brillouin failed to recognize 

that the term 〈𝜎11〉 − (𝜎11)0 in Eq.(68) is actually the Lagrangian (first Piola-Kirchhoff) 

stress.  Brillouin identified the term 〈𝜎11〉 − (𝜎11)0 in Eq.(68) as the (i = j =1) component 

of an entirely different tensor, known today as the Brillouin stress tensor S11, which he 

assumed to represent the radiation stress in Eulerian coordinates.  Brillouin’s tensor is 

written more generally as  𝑆𝑖𝑗 = 〈𝜎𝑖𝑗〉 − (𝜎𝑖𝑗)
0
.  

The improper identification of 𝑆𝑖𝑗 as the radiation stress in Eulerian coordinates has 

also occurred from a consideration of the wave equation written in ‘conservative’ form as 

[33,42,46] 

                                                              𝜕〈𝑇𝑗𝑖−𝜌𝑣𝑖𝑣𝑗〉

𝜕𝑥𝑗
= 〈

𝜕(𝜌𝑣𝑖)

𝜕𝑡
〉 = 0     (69) 

 

where 𝑇𝑗𝑖 is the Cauchy stress, 𝜌𝑣𝑖𝑣𝑗  is the momentum flux density, and the last equality 

results from Eq.(32) and the boundedness of 𝜌𝑣𝑖 as 𝑡 → ∞ .  For plane wave propagation 

along e1, integration of Eq.(69) yields 〈𝑇11〉 − (𝑇11)0 − 〈𝜌𝑣1𝑣1〉 = 0 where the constant of 

integration is set equal to the initial Cauchy stress (𝑇11)0.  The factor  〈𝑇11〉 − (𝑇11)0 is 

identified as the ‘mean Eulerian excess stress’ and the linear combination of terms, 〈𝑇11〉 −

(𝑇11)0 − 〈𝜌𝑣1𝑣1〉 is identified as the S11 component of the Brillouin stress tensor  

 

          𝑆11 = 〈𝑇11〉 − (𝑇11)0 − 〈𝜌𝑣1𝑣1〉.   (70) 

 

According to Eq.(68), however, 〈𝑆11〉 is actuality 〈𝑆11〉 = 〈𝜎11〉 − (𝜎11)0 and, according to 

Eq.(16), 〈𝜎11〉 − (𝜎11)0 = 〈𝑇11〉 − (𝑇11)0 , where the initial stress (𝜎11)0 = (𝑇11)0 .  

Substituting these equalities in Eq.(70) leads to the result that the momentum flux density 

is zero along e1 – a result consistent with the Brillouin stress tensor being a Lagrangian 

tensor, since the momentum flux density does not appear in the equations of motion in 

Lagrangian coordinates.  It is again concluded that the Brillouin stress tensor does not 

represent the radiation stress in Eulerian coordinates, as posited by Brillouin.    
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4. Acoustic radiation pressure for laterally unconfined, plane waves 

4.1.  Laterally unconfined, plane wave propagation 

In assessing acoustic radiation pressure for laterally unconfined plane waves 

propagating along e1 in inviscid fluids, it is crucial to recognize that the time-averaged 

energy density 〈2𝐾〉 (𝐾  = kinetic energy density) that drives the radiation pressure is 

produced by a sinusoidally oscillating plane wave of finite beam cross-section (usually 

cylindrical) propagating under laterally constrained conditions.  That is, the dynamic wave 

propagation is defined such that 𝑢11 ≠ 0 , 𝑢22 = 𝑢33 = 0 .  In contrast, the radiation 

pressure itself is governed by static (time-averaged, steady-state) conditions associated 

with a laterally unconstrained volume.  This is quite unlike the case for laterally confined, 

plane wave beams where both the dynamical wave and the radiation (static) pressure are 

subject to the same lateral constraints, 𝑢11 ≠ 0, 𝑢22 = 𝑢33 = 0.   

Strictly, for laterally unconfined conditions a cylindrical acoustic beam of finite 

cross-section is not planar because of diffraction, but becomes increasingly planar in an 

area around the center of the beam as the ratio of the acoustic wavelength to the beam 

radius r approaches zero.  Further, as pointed out by Lee and Wang [46] the amplitude of 

the wave does not abruptly decrease to zero beyond the beam radius but does so smoothly 

in a manner approximated by the zeroth order Bessel function 𝐽0(𝛼𝑐𝑟), where 𝛼𝑐  is a 

constant corresponding to the reciprocal of some characteristic beam radius.  For present 

purposes, there is no loss in generality for one-dimensional wave propagation to assume 

an idealized plane wave beam of cylindrical cross-section with a ‘top-hat’ amplitude 

profile.  More importantly, as shown below, lateral unconfinement modifies the assessment 

of the elastic coefficients relevant to static conditions.  

The radiation-induced static strain generated by the acoustic plane wave statically 

deforms the volume of material through which the wave propagates.  The reaction of the 

statically deformed volume, however, is governed not by the dynamic, laterally constrained 

conditions associated with plane wave propagation but by the static (time-averaged, steady 

state) conditions governing a laterally unconstrained volume.  To emphasize that the elastic 

properties associated with static, laterally unconstrained conditions are distinct from those 

of the dynamic, laterally constrained conditions associated with dynamic, acoustic plane 

wave propagation, the functions, parameters, and variables associated with static, laterally 
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unconstrained conditions are designated by the superscript ‘S’.  Thus, for static, laterally 

unconstrained conditions 〈𝑢𝑖𝑗〉 → 〈𝑢𝑖𝑗
𝑆 〉, 〈𝑢𝑖𝑗𝑢𝑘𝑙〉 → 〈𝑢𝑖𝑗

𝑆 𝑢𝑘𝑙
𝑆 〉, 〈𝜎𝑖𝑗〉 → 〈𝜎𝑖𝑗

𝑆 〉, 𝐴𝑖𝑗 → 𝐴𝑖𝑗
𝑆 , etc.   

For static, laterally unconstrained conditions in inviscid fluids, not only are the 

mean shear displacements gradients 〈𝑢𝑖𝑗
𝑆 〉𝑖≠𝑗 = 0  but also the mean dilatation 〈Θ𝑆〉 =

〈∆𝑉𝑆 𝑉0
𝑆⁄ 〉 = 〈𝑢11

𝑆 〉 + 〈𝑢22
𝑆 〉 + 〈𝑢33

𝑆 〉 = 0, where 〈∆𝑉𝑆〉 is the mean change in the initial 

volume 𝑉0
𝑆 [66].  For plane wave propagation along e1, the symmetry in directions e2 and 

e3 and the null mean dilatation, 〈Θ𝑆〉 = 0 , require that 〈𝑢22
𝑆 〉 = 〈𝑢33

𝑆 〉 = −(1 2⁄ )〈𝑢11
𝑆 〉 .  

Thus, unlike the case for laterally constrained conditions, where the strains 𝑢11, 𝑢22, and 

𝑢22  (hence, 〈𝑢11〉, 〈𝑢22〉, and 〈𝑢33〉), are independent, the relationship 〈𝑢22
𝑆 〉 = 〈𝑢33

𝑆 〉 =

−(1 2⁄ )〈𝑢11
𝑆 〉  for static, laterally unconstrained conditions reduces the number of 

independent static strains to one, given as 〈𝑢11
𝑆 〉 .  The relationship 〈𝑢22

𝑆 〉 = 〈𝑢33
𝑆 〉 =

−(1 2⁄ )〈𝑢11
𝑆 〉 implies that there is free flow of fluid in the directions e2 and e3 under static, 

laterally unconstrained conditions.   

It is convenient to begin with a consideration of Lagrangian coordinates.  

Performing the summation in the last equality in Eq.(6), time-averaging, and within the 

time-averaging substituting Eqs.(26)-(31) for the Huang coefficients and the relation 𝑢22
𝑆 =

𝑢33
𝑆 = −(1 2⁄ )𝑢11

𝑆  corresponding to laterally unconstrained conditions lead to an 

assessment of the mean internal energy density 〈𝜙𝑆〉 as (using Voigt contraction of indices 

for the elastic coefficients)  

  

           〈𝜙𝑆〉 = 𝜌0𝑈(𝑋, 0, 𝑆) + 𝐴1
𝑆〈𝑢11

𝑆 〉 +
1

2
𝐴11

𝑆 〈(𝑢11
𝑆 )2〉 +

1

3!
𝐴111

𝑆 〈(𝑢11
𝑆 )3〉 + ⋯  (71) 

where  

                𝐴1
𝑆 = −𝑝0  ,             𝐴11

𝑆 =
3

2
𝑝0    ,          𝐴111

𝑆 = −
3

2
𝑝0 .  (72) 

 

The 〈𝜎11
𝑆 〉 component of the static (radiation) stress along e1 is obtained as   

 

                          〈𝜎11
𝑆 〉 =

𝜕〈𝜙𝑆〉

𝜕𝑢11
𝑆 = 𝐴1

𝑆 + 𝐴11
𝑆 〈𝑢11

𝑆 〉 +
1

2
𝐴111

𝑆 〈(𝑢11
𝑆 )2〉 + ⋯  .     (73) 

 

It is noted from Eq.(72) that the Fox-Wallace-Beyer coefficients A and B do not appear in 
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Eqs.(71) and (73) - only the initial (hydrostatic) pressure p0 appears.  This results from the 

fact that, because the shear modulus for inviscid fluids is zero, the fluid freely deforms 

under static loads. 

 The static strain 〈𝑢11
𝑆 〉  in direction e1 can be assessed in terms of the particle 

velocity (𝜕𝑢1 𝜕𝑡⁄ ) associated with the driving, dynamical, plane wave propagation from 

the compatibility condition, Eq.(36), as  

 

                            〈𝑢11
𝑆 〉 = − 

1

4(𝑐0
𝑆)

2

𝐴111
𝑆

𝐴11
𝑆 〈(

𝜕𝑢1

𝜕𝑡
)

2
〉    (74) 

  

                   〈(𝑢11
𝑆 )2〉 =  

1

(𝑐0
𝑆)

2 〈(
𝜕𝑢1

𝜕𝑡
)

2
〉     (75) 

 

where  𝑐0
𝑆 = (𝐴11

𝑆 𝜌0⁄ )1/2.  It is noted that the elastic constants 𝐴11
𝑆  and 𝐴111

𝑆  in Eqs.(74) 

and (75) reflect the static, laterally unconstrained conditions, while the particle velocity 

(𝜕𝑢1 𝜕𝑡⁄ ) refers to the dynamical wave oscillations that drive the static displacement.   

Eqs.(74) and (75) thus establish the connection between the static strains and the mean 

(time-averaged) energy density of the driving dynamical wave.   Substituting Eqs.(74) and 

(75) in Eq.(73), noting from Eq.(16) that for plane wave propagation in direction e1 the 

Lagrangian and Eulerian pressures are exactly equal such that 〈𝜎11
𝑆 〉 = 〈𝑇11

𝑆 〉 = −〈𝑝1
𝐿〉 =

−〈𝑝1
𝐸〉, and writing  〈𝜌0 (

𝜕𝑢1

𝜕𝑡
)

2
〉 = 〈2𝐾〉 lead to 

 

           〈𝑝1
𝐸〉 − 𝑝0 = 〈𝑝1

𝐿〉 − 𝑝0 =
1

4
〈2𝐾〉  .   (76) 

 

Eq.(76) is quite different from the result obtained from the Langevin theory [27], which 

leads to the relation 〈𝑝1
𝐿〉 − 𝑝0 = 〈2𝐾〉  for the mean excess Lagrangian pressure for 

laterally unconfined, plane waves.  

Confirmation of Eq.(76) for propagation along e1 can be obtained straightforwardly 

from the Boltzmann-Ehrenfest Adiabatic Principle by re-writing Eq.(55) for the case of 

static, laterally unconstrained conditions as  
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                   〈𝑝1
𝐸〉 − 𝑝0 = 〈𝑝1

𝐿〉 − 𝑝0 = −〈2𝐾〉 (
1

𝑊𝑆

𝛿𝑊𝑆

𝛿𝑢11
𝑆 )

0
+

1

6

𝐴111
𝑆

𝐴11
𝑆

𝛿〈𝜙𝑆𝑢11
𝑆 〉

𝛿𝑢11
𝑆  

           (77) 

              = −
1

4

𝐴111
𝑆

𝐴11
𝑆 〈2𝐾〉 =

1

4
〈2𝐾〉 

 

where in Eq.(77) the constraint parameter q* (generalized displacement) in the Boltzmann-

Ehrenfest Principle is now designated as 𝑢11
𝑆  to reflect that the radiation pressure is now 

governed by static, laterally unconstrained conditions.  The natural velocity 𝑊𝑆 under such 

conditions is correspondingly defined as (𝑊𝑆)2 = 𝜌0
−1(𝜕〈𝜎11

𝑆 〉 𝜕𝑢11
𝑆⁄ ) .  Thus, 

[(𝑊𝑆)−1 𝛿𝑊𝑆 𝛿𝑢11
𝑆⁄ ]0 = (1 2⁄ )(𝐴111

𝑆 𝐴11
𝑆⁄ ) = −(1 2⁄ ) in Eq.(77).  The  term (

1

6

𝛿〈𝜙𝑆𝑢11
𝑆 〉

𝛿𝑢11
𝑆 ) 

in Eq.(77) is evaluated in the linear approximation, using Eq.(75), as 
1

6

𝛿〈𝜙𝑆𝑢11
𝑆 〉

𝛿𝑢11
𝑆 =

1

4
〈2𝐾〉.  

The linear approximation is sufficient here, since the factor containing 
𝛿〈𝜙𝑆𝑢11

𝑆 〉

𝛿𝑢11
𝑆  in Eq.(77) 

is first order in the nonlinearity – the order retained in Eq.(77).  The relation given by 

Eq.(76), obtained from finite deformation theory, is thus confirmed by Eq.(77), obtained 

from the Boltzmann-Ehrenfest Adiabatic Principle.  

 The static stresses 〈𝜎22
𝑆 〉 and 〈𝜎33

𝑆 〉, respectively, in the directions e2 and e3 are 

obtained from the mean internal energy density 〈𝜙𝑆〉 as 〈𝜎22
𝑆 〉 = 𝜕〈𝜙𝑆〉 𝜕𝑢22

𝑆⁄  and 〈𝜎33
𝑆 〉 =

𝜕〈𝜙𝑆〉 𝜕𝑢33
𝑆⁄ .  However, because of the symmetry in the directions e2 and e3 and the 

dilatation relationship 〈Θ𝑆〉 = 〈∆𝑉𝑆 𝑉0
𝑆⁄ 〉 = 〈𝑢11

𝑆 〉 + 〈𝑢22
𝑆 〉 + 〈𝑢33

𝑆 〉 = 0  under static, 

laterally unconstrained conditions, the only independent strain is 𝑢11
𝑆 .  There is no 

dependence of 〈𝜙𝑆〉  on 𝑢22
𝑆  and 𝑢33

𝑆 .  Thus, 〈𝜎22
𝑆 〉 = 𝜕〈𝜙𝑆〉 𝜕𝑢22

𝑆⁄ = 0  and 〈𝜎33
𝑆 〉 =

𝜕〈𝜙𝑆〉 𝜕𝑢33
𝑆⁄ = 0, which are exactly the conditions that result in the null dilatation 〈Θ𝑆〉 =

0 for isotropic materials with zero shear modulus, i.e., ideal fluids [66].  This means that 

the Lagrangian excess pressures normal to the plane wave propagation direction are 

obtained as 

            〈𝑝2
𝐿〉 − 𝑝0 = 〈𝑝3

𝐿〉 − 𝑝0 = −〈𝜎22
𝑆 〉 + 𝐴1

𝑆 = −〈𝜎33
𝑆 〉 + 𝐴1

𝑆 = 0 . (78) 

 

This also means, from Eq.(17) and the null value of the Lagrangian stresses in directions 

e2 and e3 under static conditions, that the Eulerian excess pressures normal to the wave 
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propagation direction are given as 

 

         〈𝑝2
𝐸〉 − 𝑝0 = 〈𝑝3

𝐸〉 − 𝑝0 = 0.     (79) 

 

Thus, for laterally unconfined, plane wave propagation in fluids the acoustic radiation 

pressure along the direction of propagation is 
1

4
〈2𝐾〉 and zero in the directions normal to 

the propagation direction.  These results hold for both Lagrangian and Eulerian coordinates 

for laterally unconfined, plane wave propagation in fluids. 

 Eqs.(76) and (77) show that the mean Eulerian and Lagrangian excess pressures for 

laterally unconfined, plane waves are exactly equal with magnitude (1 4⁄ )〈2𝐾〉 along the 

direction of wave propagation.  Again, these results are quite different from the Langevin 

expression for laterally unconfined, plane waves, which posits [27] that the mean 

Lagrangian pressure 〈𝑝1
𝐿〉 along e1 is obtained as  

 

        〈𝑝1
𝐿〉 = 〈𝐾〉 + 〈𝜙〉 + 𝐶 = 〈2𝐾〉 + 𝐶 = 〈𝐸〉 + 𝐶    (80) 

 

where it is assumed in Eq.(80) that 〈2𝐾〉 = 〈𝐸〉 and C = constant.  It is appropriate to point 

out, in view of Eqs.(52) and (53), that the relation 〈2𝐾〉 = 〈𝐸〉 is only approximately true 

for nonlinear waves.  Nonetheless, in the interest of recounting the historical derivations, 

given in Section 4.2, the relation 〈2𝐾〉 = 〈𝐸〉 is retained.  Eq.(80) is known as Langevin’s 

first relation. Assuming C = p0 for plane wave propagation for laterally unconfined plane 

waves impinging on an absorptive target in a fluid medium leads to Langevin’s result for 

the acoustic radiation pressure as 

   

                                 〈𝑝1
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉 = 〈𝑝1

𝐿〉 − 𝑝0 = 〈𝐸〉.   (81) 

 

In view of the long-standing acceptance of the Langevin expression, Eq.(81), it is 

appropriate to analyze in some detail why the Langevin result differs from Eqs.(76) and 

(77). 
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4.2. Traditional derivations of radiation pressure for laterally, unconfined plane waves 

 A number of efforts have been published in an attempt to validate analytically 

Langevin’s result [27] that the acoustic radiation pressure in laterally unconfined, plane 

wave beams in fluids is equal to the mean total energy density, i.e. 〈𝑝1
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉 = 〈𝐸〉.  The 

derivations do not distinguish analytically a priori, as done in Section 4.1, that the elastic 

properties associated with the radiation pressure result from laterally unconstrained, static 

conditions, while those of the driving acoustic wave result from laterally constrained, 

dynamic conditions.  Recognition of the difference occurs a posteriori in the traditional 

derivations, which entail various erroneous and, in some cases, somewhat contrived 

arguments involving fluid flow to establish Langevin’s result.  Many efforts [26,32,38-

40,46,47] begin by noting that for fluids the equation-of-state is expressed in terms of the 

mass density.  The relation 𝜌 = 𝜌0(1 + 𝑢11)−1 is expanded in terms of u11, substituted in 

the equation-of-state for the fluid (a Eulerian equation), and time-averaged, assuming 

sinusoidal waves, to assess what is assumed to be the Lagrangian radiation pressure.  The 

Eulerian radiation pressure is then assumed to be calculated by substituting the assessed 

Lagrangian pressure for the term 𝑞𝐿(𝑋, 𝑡)|𝑋=𝑥  in the last equality in Eq.(3) and time-

averaging, again assuming sinusoidal waves.  The difference between the calculations of 

the assumed Eulerian and Lagrangian radiation pressures is assessed to be the energy 

density, i.e.  〈𝑝1
𝐿〉 − 〈𝑝1

𝐸〉 = 〈𝐸〉 = 〈2𝐾〉.     

The relationship 〈𝑝1
𝐿〉 − 〈𝑝1

𝐸〉 = 〈𝐸〉 = 〈2𝐾〉  is used to assess the Langevin 

radiation pressure defined [46,47] “as the difference between the mean pressure at a 

reflecting or absorbing wall and the pressure in the un-perturbed fluid behind the wall, with 

the fluid being in contact with the two sides.”  This definition is equivalent to the condition 

that for laterally unconfined, plane waves the mean dilatation 〈Θ𝑆〉 = 0, since “the fluid 

being in contact with the two sides” requires the lateral free flow of fluid.  But the laterally 

unconfined, static condition is not analytically imposed a priori in the traditional 

derivations [26,32,39,40].  Instead, to obtain the Langevin result, 〈𝑝1
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉 = 〈𝐸〉, it is 

generally assumed that because the ‘surfaces normal to the wave propagation direction e1 

are oscillating,’ the radiation pressure in that direction must correspond to the Lagrangian 

radiation pressure, and because the ‘surfaces normal to the directions e2 and e3 are fixed,’ 

the radiation pressure in the directions e2 and e3 must correspond to the Eulerian radiation 
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pressure.  Since the volume containing the wave is laterally unconfined, it is assumed in 

some approaches [26,32,47] that the initial pressure and energy density inside the volume 

change to equalize the ambient pressure p0 outside the volume.  The equalization is used 

to obtain the Langevin pressure as 〈𝑝1
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉 = 〈𝑝1

𝐿〉 − 〈𝑝1
𝐸〉 = 〈2𝐾〉 = 〈𝐸〉   (see, for 

example, [26,32,47] for details).     

There are two primary problems with the derivations outlined above.  First, as 

pointed out in Section 2.4, it is not correct to assume that the Lagrangian coordinates are 

‘moving’ coordinates and the Eulerian coordinates are ‘fixed’ coordinates, such that the 

coordinates necessary to describe motion along the direction of propagation must be 

Lagrangian coordinates and that the coordinates normal to the wave motion must be 

Eulerian coordinates.  Either set of coordinates can be regarded as fixed or moving.  One 

must decide in setting up and solving a given problem whether to work in Lagrangian or 

Eulerian coordinates, since it is improper to mix the coordinates arbitrarily.  The second 

problem in the derivations is the employment of the power series expansion given in the 

last equality in Eq.(3) to assess the Eulerian radiation pressure from the Lagrangian 

pressure.  The Eulerian pressure must be assessed from the transformation given by Eq.(12) 

or Eq.(17), which shows that for longitudinal, plane wave propagation the Lagrangian and 

Eulerian pressures are exactly equal, as given by Eq.(16).  Moreover, the initial assumption 

that substituting the relation 𝜌 = 𝜌0(1 + 𝑢11)−1 in an Eulerian equation-of-state leads to 

an expression for the Lagrangian pressure is itself incorrect.  The substitution simply yields 

the Eulerian pressure written in terms of the displacement gradients [61].      

 Other attempts to assess the acoustic radiation pressure along the propagation 

direction for laterally unconfined, plane waves rely on establishing that the ‘mean excess 

Eulerian pressure,’ 〈𝑝1
𝐸〉 − 𝑝0 = −〈𝑇11〉 + (𝑇11)0 , along the propagation direction e1 is 

zero, leaving the radiation pressure to be equal to the momentum flux density, 〈𝜌𝑣1𝑣1〉 =

〈𝐸〉, in the Brillouin stress tensor, Eq.(70).  However, as shown in Section 3.2.2, the term 

identified in the Brillouin stress tensor as the momentum flux density is not the momentum 

flux density at all, but rather the contribution to the change in the system period resulting 

from the variation in the acoustic path length in response to the virtual variation in the 

strain, when the variation in the system period is assessed using the true velocity.  And the 

term identified by Brillouin as the ‘mean excess Eulerian pressure’ is simply the 
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contribution to the change in system period resulting from the change in the true sound 

velocity, when the variation in the system period is assessed using the true velocity. 

Brillouin largely ignored the ‘mean excess Eulerian pressure’ term in applications 

of the Brillouin stress tensor, assuming the term to be irrelevant in assessing the radiation 

pressure.  Several attempts to justify Brillouin’s assumption have appeared in the literature.  

The approach to establishing a null ‘mean excess Eulerian pressure’ has been to utilize the 

relationship between pressure and enthalpy.  The derivations of Lee and Wang [46]. 

Beissner [48], Beissner and Makarov [49], and Hasegawa et al. [45] are representative of 

such approaches.  Consider the wave equation in Eulerian coordinates 

 

                      𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
) = −

𝜕𝑝𝐸

𝜕𝑥𝑖
    .          (82) 

 

For irrotational sound waves 𝒖 = ∇𝜑𝑆𝑃, where 𝜑𝑆𝑃 is the scalar potential.  Eq.(82) can 

thus be re-written as 

                 ∇ (
𝜕𝜑𝑆𝑃

𝜕𝑡
+

1

2
|∇𝜑𝑆𝑃|2) = −

∇𝑝𝐸

𝜌
  .   (83) 

 

It is generally assumed that Eq.(83) can be solved using the thermodynamic 

relationship 𝑑𝐻 = (𝑑𝑝𝑇ℎ 𝜌0⁄ ) + 𝑇𝑑𝑆𝑚  where 𝐻 = 𝐻(𝑝𝑇ℎ, 𝑆𝑚)  is the enthalpy per unit 

mass, Sm is the entropy per unit mass, and 𝑝𝑇ℎ is the thermodynamic pressure [55,58].  It 

is critically important to recognize that the thermodynamic pressure 𝑝𝑇ℎ is not the Eulerian 

pressure 𝑝𝐸.  The thermodynamic pressure is obtained from the thermodynamic tensions 

(second Piola-Kirchhoff stress) 𝑡𝑖𝑗 = 𝜌0(𝜕𝑈 𝜕𝜂𝑖𝑗⁄ ) via the relation 𝑝𝑇ℎ𝛿𝑖𝑗 = −𝑡𝑖𝑗 [55,58].  

For longitudinal, plane wave propagation along direction e1, 𝑝1
𝐿 = 𝑝1

𝐸 = (1 + 𝑢11)𝑝1
𝑇ℎ 

[55,58].   It is generally overlooked that the pressure in the thermodynamic relationship for 

enthalpy is the thermodynamic pressure 𝑝𝑇ℎ and it is incorrectly assumed in Eq.(83) that 

for adiabatic motion ∇𝑝𝐸 𝜌⁄ = ∇𝐻 .  It is then assumed that the pressure 𝑝𝐸  can be 

expanded in a power series in the enthalpy H [46] or that 𝐻 − 𝐻0 = ∫ 𝜌−1𝑝𝐸

𝑝0
𝑑𝑝𝐸 can be 

expanded in terms of the pressure 𝑝𝐸 [45,48,49].  The power series expansion is a key 

operation in the derivations to obtain the relationship for propagation along e1 (see 
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[45,46,48,49] for details) 

                     〈𝑝1
𝐸〉 = 〈𝜙〉 − 〈𝐾〉 + 𝐶    (84) 

 

where C is a constant and 〈𝜙〉 and 〈𝐾〉 are, respectively, the time-averaged potential and 

kinetic energies of the wave.   

Eq.(84) is known as Langevin’s second relation and is generally regarded as the 

expression defining the mean Eulerian pressure in a wave.  For plane, progressive waves it 

is traditionally assumed that  〈𝜙〉 = 〈𝐾〉.  If C is assumed to be the initial pressure p0, 

Eq.(84) predicts that the mean excess Eulerian pressure is zero.  This means, in regard to 

the traditional (incorrect) interpretation of the Brillouin stress tensor, that the acoustic 

radiation pressure depends only on the momentum flux density 〈𝜌𝑣1𝑣1〉 = 〈𝐸〉 for laterally 

unconfined, plane wave propagation along e1. 

 The problem with the derivations leading to Eq.(84) is that the Eulerian pressure 

𝑝𝐸 is not the thermodynamic pressure 𝑝𝑇ℎ.  Substituting ∇𝐻 for ∇𝑝𝐸 𝜌⁄  in Eq.(83) does not 

affect the terms on the left-hand side of the equation but it changes the right-hand side of 

the equation from a dependence on 𝑝𝐸 to a dependence on 𝑝𝑇ℎ.  By substituting 𝑝𝑇ℎ for 

𝑝𝐸 in the relevant equations, the arguments of references [45,46,48,49] lead to the relation 

 

           〈𝑝1
𝑇ℎ〉 = 〈𝜙〉 − 〈𝐾〉 + 𝐶      (85) 

 

for propagation along direction e1, rather than to Eq.(84).  For longitudinal wave 

propagation along e1 [55,58], 

 

                                    〈𝑝1
𝑇ℎ〉 = 〈(1 + 𝑢11)−1𝑝1

𝐸〉 = 〈(1 + 𝑢11)−1𝑝1
𝐿〉          

(86) 

             ≈ 〈𝑝1
𝐸〉 − 〈𝑢11𝑝1

𝐸〉 = 〈𝑝1
𝐿〉 −  〈𝑢11𝑝1

𝐿〉 = 〈𝑝1
𝐸〉 + 2〈𝐾〉 . 

 

The last equality in Eq.(86) follows from the virial theorem, Eq.(50), where 𝜎11 = −𝑝1
𝐿 =

= −𝑝1
𝐸.  Substituting Eq.(86) in Eq.(85) leads to  

 

                   〈𝑝1
𝐸〉 = 〈𝑝1

𝐿〉 = 〈𝜙〉 − 3〈𝐾〉 + 𝐶  .   (87) 
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Eq.(87) does not yield Langevin’s second relation, Eq.(84).   

The assumption that the enthalpy H is a function of the Eulerian pressure 𝑝𝐸 has 

further implications regarding the expansion of  𝑝𝐸 in a power series in H.  From Eq.(6), 

the internal energy per unit mass 𝑈 = 𝑈(𝑿, 𝜂𝑖𝑗 , 𝑆𝑚).  For plane wave propagation along e1 

  

                                    𝑝1
𝐸 = 𝑝1

𝐿 = (1 + 𝑢11)𝑝1
𝑇ℎ  

and 

                                    𝑑𝑈 = (𝜕𝑈 𝜕𝜂11⁄ )𝑆𝜂11 + (𝜕𝑈 𝜕𝑆⁄ )𝜂𝑑𝑆𝑚,  

 

where (𝜕𝑈 𝜕𝜂11⁄ )𝑆 = − 𝑝1
𝑇ℎ 𝜌0⁄ , (𝜕𝑈 𝜕𝑆𝑚⁄ )𝜂 = 𝑇 , and T is temperature [55].  The 

enthalpy per unit mass H is related to the internal energy per unit mass U as [55] 

 

                                          𝐻 = 𝐻(𝑝𝑇ℎ, 𝑆𝑚) = 𝑈 + 𝜌0
−1𝜂11𝑝𝑇ℎ.   

 

The differential of H is 

  

             𝑑𝐻 = (𝜕𝐻 𝜕𝑝1
𝑇ℎ⁄ )

𝑆
𝑑𝑝1

𝑇ℎ + (𝜕𝐻 𝜕𝑆𝑚⁄ )𝑝𝑑𝑆𝑚 , 

 

where (𝜕𝐻 𝜕𝑝𝑇ℎ⁄ )𝑆 = 𝜌0
−1𝜂11 and (𝜕𝐻 𝜕𝑆𝑚⁄ )𝑝𝑑𝑆𝑚 = 𝑇𝑑𝑆𝑚.  For present purposes, it is 

sufficient to consider only the linear approximation for isentropic conditions such that  

𝑝1
𝑇ℎ ≈ 𝑝1

𝐿 = 𝑝1
𝐸, 𝜂11 ≈ 𝑢11, and expand 𝑝1

𝐸to first order in H as 

 

                        𝑝1
𝑇ℎ = 𝑝1

𝐸 = 𝑝0 + (
𝜕𝑝1

𝐸

𝜕𝐻
)

𝑆𝑚,0
𝐻 = 𝑝0 + 𝜌0𝑢11

−1(𝑈 + 𝜌0
−1𝑢11𝑝1

𝐸)    

           (88) 

                        = 𝑝0 + 𝑝1
𝐸 + 𝜌0𝑢11

−1𝑈 

 

where the enthalpy-internal energy relationship [55] 𝐻 = 𝑈 + 𝜌0
−1𝑢11𝑝1

𝑇ℎ = 𝑈 +

𝜌0
−1𝑢11𝑝1

𝐸  and the relation (𝜕𝑝1
𝑇ℎ 𝜕𝐻⁄ )

𝑆𝑚
= (𝜕𝑝1

𝐸 𝜕𝐻⁄ )𝑆𝑚
= 𝜌0𝑢11

−1  in the linear 
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approximations are substituted in Eq.(88) to obtain the last equality.  Solving Eq.(88) for 

U yields 𝑈 = −(𝑝0 𝜌0⁄ )𝑢11.  Since the pressure in the linear approximation is defined from 

the internal energy per unit mass as [55] 𝑝1
𝐸 = 𝑝1

𝑇ℎ = −𝜌0(𝜕𝑈 𝜕𝑢11⁄ )𝑆𝑚
, substituting 𝑈 =

−(𝑝0 𝜌0⁄ )𝑢11 in the expression results in 𝑝1
𝐸 = 𝑝0.  This states that the only term allowed 

in the expansion in Eq.(88) is the constant initial pressure p0, which indicates that an 

expansion of the pressure in terms of the enthalpy is not a meaningful operation.  This is 

not surprising, since, analogously, it is not generally meaningful to expand the strain in 

terms of the internal energy.      

It is concluded that Langevin’s second relation, Eq.(84), is incorrect and does not 

provide an assessment of the mean Eulerian pressure, as traditionally assumed.  Indeed, the 

results of Eqs.(39), (40), (60), and (61) already suggest that since 〈𝑝1
𝐸〉 = 〈𝑝1

𝐿〉 for plane 

wave propagation along e1, Langevin’s second relation, 〈𝑝1
𝐸〉 = 〈𝜙〉 − 〈𝐾〉 + 𝐶 , and 

Langevin’s first relation, 〈𝑝1
𝐿〉 = 〈𝜙〉 + 〈𝐾〉 + 𝐶 , cannot both be correct.  Equally 

important, it is seen from Eqs.(76) and (77) that Langevin’s first relation is also incorrect, 

as the equation does not account analytically a priori for the difference between the elastic 

properties under laterally unconfined, static conditions and that of the driving acoustic 

wave propagating under laterally confined, dynamic conditions.   

 

4.3. Implications for transducer calibration 

   Issenmann et al. [50] point out that “despite the long-lasting theoretical 

controversies … the Langevin radiation pressure … has been the subject of very few 

experimental studies.”   Among the most important experimental studies are those by 

Herrey [51], who shows that the radiation pressure in laterally unconfined, plane wave 

beams in fluids is anisotropic, and Rooney [52], who shows that the radiation pressure in 

such beams is independent of the dynamic acoustic nonlinear parameter 𝛽 =

(− 𝐴111 𝐴11⁄ ) of the fluid - although Eqs.(72) show that the static nonlinearity parameter 

𝛽𝑆 = (−𝐴111
𝑆 𝐴11

𝑆⁄ ) for such beams in all fluids is one.  Absolute measurements obtained 

independently in the same experiment for the power generated by an acoustic source and 

the radiation force incident on a target are generally lacking.  Indeed, Beissner [21] points 

out that if acoustic radiation pressure is used to calibrate acoustic transducers the 

“measured radiation force must be converted to the ultrasonic power value and this is 
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carried out with the help of theory.”  The measured radiation force on the target is generally 

assumed to result from the Langevin relation between the radiation pressure generated by 

the acoustic source and the energy density of the wave.   

 Consider a planar transducer of active area SA that emits an idealized plane wave.  

It is assumed for practical purposes that 〈𝐸〉 = 2〈𝐾〉.  The average ultrasonic power 〈𝑊𝑝𝑤𝑟〉 

emitted by the transducer is related to the energy density of the plane wave as 〈𝑊𝑝𝑤𝑟〉 =

 〈𝐸〉𝑆𝐴𝑐, where c is the sound velocity in the propagation medium.  If Langevin’s theory is 

assumed to be correct, then along the direction of plane wave propagation, the average 

force 〈𝐹〉 generated over the area 𝑆𝐴 normal to the propagation direction is 〈𝐹〉 = 〈𝐸〉𝑆𝐴 

and the average ultrasonic power is 〈𝑊𝑝𝑤𝑟
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉 =  〈𝐹〉𝑐.  In contrast, the present theory 

for laterally unconfined plane waves predicts from Eqs.(76) and (77) that  〈𝑝1
𝐸〉 − 𝑝0 =

〈𝑝1
𝐿〉 − 𝑝0 =

1

4
〈2𝐾〉 =

1

4
〈𝐸〉.  The average force 〈𝐹〉 generated by a plane wave propagating 

along e1 and normally incident on a surface of area 𝑆𝐴 is 〈𝐹〉 = (〈𝑝1
𝐸〉 − 𝑝0)𝑆𝐴 = (〈𝑝1

𝐿〉 −

𝑝0)𝑆𝐴 =
1

4
〈𝐸〉𝑆𝐴 .  Thus, 〈𝐸〉 = 4〈𝐹〉/𝑆𝐴  and the average ultrasonic power 〈𝑊𝑝𝑤𝑟〉 

generated by the transducer is assessed from the present theory to be 

 

  〈𝑊𝑝𝑤𝑟〉 =  〈𝐸〉𝑆𝐴𝑐 = 4〈𝐹〉𝑐 = 4〈𝑊𝑝𝑤𝑟
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉.    (89) 

 

Eq.(89) states that the power emitted by the transducer is four times larger than the power 

〈𝑊𝑝𝑤𝑟
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉 =  〈𝐹〉𝑐 assessed from the Langevin theory.    

  

5. Summary and conclusion 

 The long-standing controversy regarding acoustic radiation pressure in laterally 

confined and unconfined, acoustic beams in fluids is re-examined from the perspective of 

finite deformation theory.  Since most of the confusion and misunderstanding regarding 

acoustic radiation pressure stems from the seminal papers [23-28,38-40], which assume 

plane wave propagation in fluids, the present effort also focuses on plane wave propagation 

in fluids.  One of the most important findings from finite deformation theory is that, for 

plane wave propagation, the Lagrangian and Eulerian pressures are exactly equal along the 

propagation direction.  This is contrary to the result obtained in traditional derivations using 
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an expansion of the Eulerian and Lagrangian pressures in terms of the particle 

displacement, given by Eqs.(3) and (4).  It is shown in Section 2.4 that the expansions in 

Eqs.(3) and (4) do not define the transformation between Lagrangian and Eulerian 

quantities, as generally assumed, but simply provide an assessment of the difference 

between a given Lagrangian quantity, Eq.(3), or a given Eulerian quantity, Eq.(4), 

evaluated at two different points in Cartesian space, separated by the displacement u.  The 

correct transformation between Lagrangian and Eulerian quantities must be obtained from 

the transformation coefficients of finite deformation theory, as discussed in Section 2 and 

illustrated in Appendices A and B.  

The traditional transformation between Lagrangian and Eulerian quantities 

obtained from the expansions in Eqs.(3) and (4) has been motivated in part by the incorrect 

assumptions that (a) surfaces normal to the direction e1 of wave propagation oscillate and, 

therefore, the radiation pressure along that direction must be the Lagrangian radiation 

pressure, and (b) surfaces normal to the directions e2 and e3 are fixed and, therefore, the 

radiation pressure in those directions must be the Eulerian radiation pressure.  As shown in 

Section 2.4, either set of coordinates may be regarded as fixed.  For work in solids it the 

Lagrangian coordinates that are usually regarded as fixed [42,43,55-57,60].  It is improper 

and somewhat contrived to mix coordinate systems arbitrarily in a given problem, 

especially to assign a particular coordinate system to physical motion based on the assumed 

attributes of the coordinate system regarding that motion.  Such assigning of attributes and 

mixing of Lagrangian and Eulerian coordinates have led to considerable misunderstanding 

and confusion in assessing the acoustic radiation pressure.   

 A laterally confined, plane wave propagating along direction e1 corresponds to the 

condition that the lateral strains (displacement gradients) u22 = u33 = 0.  Such a condition 

applies to a plane wave of infinite cross-section or to an idealized plane wave propagating 

in a laterally enclosed volume with infinitely stiff lateral boundaries.  The application of 

finite deformation theory leads to the traditionally derived Rayleigh radiation pressure 

〈𝑝1
𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 =

1

4
(

𝐵

𝐴
+ 2) 〈2𝐾〉 for liquids and 〈𝑝1

𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ〉 =
1

4
(𝛾 + 1)〈2𝐾〉 for ideal gases 

along the propagation direction e1 for both Lagrangian and Eulerian coordinates.  In 

directions e2 and e3 the radiation pressure is given in Lagrangian coordinates as 〈𝑝2
𝐿〉 −
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𝑝0 = 〈𝑝3
𝐿〉 − 𝑝0 =

1

4
(

𝐵

𝐴
− 2) 〈2𝐾〉 for liquids, assuming p0/A << 1.  The identical results 

were also derived by Brillouin from the Boltzmann-Ehrenfest Principle of Adiabatic 

Invariance (after correcting for an omitted nonlinear term in Brillouin’s derivation), but 

Brillouin posited that the results are in Eulerian coordinates rather than, as shown in Section 

3.2.2, in Lagrangian coordinates.   

It is shown in Section 3.2.2 that Brillouin misidentified two terms in the equation 

for the radiation pressure obtained from the Boltzmann-Ehrenfest Adiabatic Principle.  One 

term, which Brillouin called the momentum flux density, is not the momentum flux density 

at all but the contribution to the fractional variation in the period of wave oscillation 

resulting from a change in the path length from slow, virtual variations in the strain 

(generalized displacement in terms of the Boltzmann-Ehrenfest Principle).  The second 

term misidentified by Brillouin is the contribution to the fractional change in the system 

period associated with the change in the true sound velocity from virtual variations in the 

strain.  Brillouin called this latter term the ‘mean Eulerian excess pressure,’ 〈𝑝1
𝐸〉 − 𝑝0, and 

called the sum of the two misidentified terms the components of an entirely new stress 

tensor, known today as the Brillouin stress tensor.  It is shown in Section 3.2.2 that the 

components of the Brillouin stress tensor are actually the components of the Lagrangian 

radiation stress tensor for laterally confined, plane waves propagating in direction e1.   

A laterally unconfined, plane wave propagating along direction e1 in fluids 

corresponds to the condition that the mean stresses along the directions e2 and e3 are zero 

or, equivalently, that the mean dilatation 〈Θ𝑆〉 under the static (time-averaged, steady-state) 

conditions associated with the radiation pressure is given by 〈Θ𝑆〉 = 〈∆𝑉𝑆 𝑉0
𝑆⁄ 〉 = 〈𝑢11

𝑆 〉 +

〈𝑢22
𝑆 〉 + 〈𝑢33

𝑆 〉 = 0, where 〈∆𝑉𝑆〉 is the mean change in the initial volume 𝑉0
𝑆 [66].  The 

null mean dilatation results from the null shear modulus that is characteristic of fluids [66].  

The null mean dilatation and the symmetry along e2 and e3 reduce the number of 

independent strain variables to one, chosen under static conditions to be 𝑢11
𝑆 .  It is shown 

in Section 4.1 from finite deformation theory and from the Boltzmann-Ehrenfest Adiabatic 

Principle that for both Eulerian and Lagrangian coordinates the acoustic radiation pressure 

for plane waves along the direction of propagation is given as 〈𝑝1
𝐸〉 − 𝑝0 = 〈𝑝1

𝐿〉 − 𝑝0 =

1

4
〈2𝐾〉 ≈

1

4
〈𝐸〉 .  Normal to the wave propagation direction 〈𝑝2

𝐸〉 − 𝑝0 = 〈𝑝2
𝐿〉 − 𝑝0 =
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〈𝑝3
𝐸〉 − 𝑝0 = 〈𝑝3

𝐿〉 − 𝑝0 = 0 .  The results are the direct consequence of the a priori 

assumptions in the derivation of a null mean dilatation, the directional symmetry for plane 

wave propagation, and the application of the relationship between the Huang elastic 

coefficients and the Fox-Wallace-Beyer coefficients for liquids (ratio of specific heats for 

gases) obtained from Eqs.(26)-(31).       

The present results for laterally unconfined plane wave propagation in fluids are 

contrary to the traditional results obtained both from the Brillouin theory, where the 

radiation pressure is assumed to result from the momentum flux density 〈𝜌𝑣1𝑣1〉, and the 

Langevin theory, which predicts that 〈𝑝1
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉 = 〈𝐸〉  along the wave propagation 

direction.  As examined analytically in Section 4.2, the traditional derivations for laterally 

unconfined, plane waves in fluids do not account a priori for the difference between the 

elastic properties under static, laterally unconfined conditions (giving rise to free fluid 

flow) and that of the driving acoustic wave propagating under laterally confined conditions 

(that do not permit free flow).  Rather than accounting a priori for the difference in elastic 

properties, a patchwork of a posteriori assumptions, definitions, and arguments has been 

used in various attempts to quantify the radiation pressure for laterally unconfined, plane 

waves.  The derivations are typically based on a number of misconceptions that have 

permeated the acoustics literature including (a) a widespread misunderstanding of 

Lagrangian and Eulerian quantities and of the transformation between them, (b) the 

misinterpretation by Brillouin of terms leading to the Brillouin stress tensor, and (c) the 

assumption that the pressure defined by the enthalpy in deriving Langevin’s second relation 

is the Eulerian pressure rather than the thermodynamic pressure (second Piola-Kirchhoff 

pressure).  The present work corrects these misconceptions and provides a coherent, first 

principles examination of acoustic radiation pressure based on finite deformation theory 

that is independently verified from the Boltzmann-Ehrenfest Principle of Adiabatic 

Invariance.   

The acoustic radiation pressure is used in a variety of applications [1-22], many of 

which rely on a reliable assessment of the force on a target generated by an acoustic source.  

In such cases, as pointed out by Beissner [21], the “measured radiation force must be 

converted to the ultrasonic power value and this is carried out with the help of theory.”  It 

is appreciated that the measurements for diffracted and focused beams are not described 
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by simple plane wave propagation, but because of the large difference between the present 

value of (1 4⁄ )〈2𝐾〉 for the acoustic radiation pressure along the propagation direction for 

laterally unconfined, plane waves and the value 〈𝐸〉 ≈ 〈2𝐾〉 from the Langevin theory or 

〈𝜌𝑣1𝑣1〉 from the Brillouin stress tensor, it would seem prudent to re-examine relevant 

applications in view of the present theoretical results. The use of the Langevin theory is of 

particular concern when acoustic radiation pressure is used to calibrate transducers.  

Indeed, the power 〈𝑊𝑝𝑤𝑟〉 emitted from the transducer as assessed from the present theory 

is 〈𝑊𝑝𝑤𝑟〉 =  4〈𝐹〉𝑐 , where 〈𝐹〉 = the average force and c = sound velocity.  This value is 

four times larger than the power 〈𝑊𝑝𝑤𝑟
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛〉 =  〈𝐹〉𝑐 predicted by the Langevin theory.    
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Appendix A. Mass density in Lagrangian and Eulerian coordinates 

Consider two points in the Lagrangian (rest or initial) coordinates in a material 

given by the vectors X(A) and X(B) separated by the infinitesimal vector distance dX = X(B) 

– X(A).  During deformation, points X(A) and X(B), respectively, move to points x(A) and x(B) 

in the Eulerian (present) coordinates, separated by the vector displacement dx = x(B) – x(A).  

The deformation 𝑑𝑿 → 𝑑𝒙 is given as 

 

   𝑑𝑥𝑖 = 𝑥𝑖(𝑿(𝑨) + 𝑑𝑿) − 𝑥𝑖(𝑿𝑨) = 𝛼𝑖𝑗𝑑𝑋𝑗       (A1) 

 

where 𝛼𝑖𝑗 = 𝜕𝑥𝑖 𝜕𝑋𝑗⁄  are the transformation coefficients of finite deformation theory. 

Eq.(A1) can be used to obtain the relationship between the un-deformed mass density 0 

and the deformed mass density  by assuming that the specific volume containing the mass 

in the un-deformed state is a rectangular parallelepiped with sides parallel to the Cartesian 

coordinate axes having unit vectors e1, e2, and e3.  Thus, dX(1) = |dX(1)|e1 , dX(2) = |dX(2)|e2, 

dX(3) = |dX(3)|e3 and the elemental un-deformed specific volume dV0 in the Lagrangian 

coordinates is obtained as  

 



 

46 

 

                 𝑑𝑉0 = 𝑑𝑿(1) ∙ 𝑑𝑿(2) × 𝑑𝑿(3) = |𝑑𝑋(1)||𝑑𝑋(2)||𝑑𝑋(3)|𝒆1 ∙ 𝒆𝟐 × 𝒆𝟑 (A2) 

                                             =  |𝑑𝑋(1)||𝑑𝑋(2)||𝑑𝑋(3)| 

            

From Eq.(A1) the Lagrangian vector dX(1) deforms to a vector dx(1) = |dx(1)|m1 (m1 

= unit vector) in Eulerian coordinates with Cartesian components d(x(1))i = i1|dX(1)| (i = 1, 

2, 3), dX(2) deforms to dx(2)
 = |dx(2)|m2 (m2 = unit vector) with components d(x(2))i = 

i2|dX(2)| (i = 1, 2, 3), and dX(3) deforms to dx(3) = |dx(3)|m3 (m3 = unit vector) with 

components d(x(3))i = i3|dX(3)| (i = 1, 2, 3).  The elemental deformed specific volume 𝑑𝑉 =

𝑑𝒙(1) ∙ 𝑑𝒙(2) ×  𝑑𝒙(3) is thus related to the elemental un-deformed specific volume dV0 as  

 

                      
𝑑𝑉

𝑑𝑉0
=

𝑑𝒙(1)∙𝑑𝒙(2)× 𝑑𝒙(3)

𝑑𝑿(1)∙𝑑𝑿(2)×𝑑𝑿(13) = det 𝛼𝑖𝑗 ≡ 𝐽 =
𝜌0

𝜌
     (A3) 

 

where J is the Jacobian determinant, det(ij), of the transformation.  The last equality in 

Eq.(A3) follows from the fact that the mass contained in the un-deformed and deformed 

specific volumes remains constant during deformation. 

 Although the mass density 𝜌 in Eq.(A3) is expressed in terms of the transformation 

coefficients 𝛼𝑖𝑗, which refer to Lagrangian coordinates, it is important to recognize that at 

a given point and time in Cartesian space the Lagrangian and Eulerian mass densities, 𝜌𝐿 

and 𝜌𝐸 , respectively, are equal such that 𝜌 = 𝜌𝐿 = 𝜌𝐸.  See Sections 2.2 and 2.3 for details. 

 

Appendix B. Lagrangian and Eulerian stresses and pressures 

  Consider in the initial (rest) state of the material a plane of infinitesimal area dS0 

with unit normal vector N.  The plane can be described in terms of the Lagrangian (initial) 

coordinates by the relation 

                   𝑁𝑖𝑑𝑋𝑖 = 0             (B1)  

 

where i = 1, 2, 3 and Ni are the Cartesian components of N.  Under an impressed stress the 

planar area dS0 will be deformed into the infinitesimal planar area dS with unit normal 

vector n, which by substituting the relation 𝑑𝑋𝑖 = 𝛾𝑖𝑗𝑑𝑥𝑗  in Eq.(B1) can be described in 

terms of the Eulerian (present) coordinates as njdxj = 0 where the Cartesian components of 
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n are 

                  𝑛𝑗 =
𝑁𝑖𝛾𝑖𝑗

𝑓𝑁
 .      (B2) 

 

The factor fN in Eq.(B2) is inserted to normalize n.   Normalization requires that njnj =1, 

which yields the relation 

                                         𝑓𝑁
2 = 𝛾𝑖𝑘𝛾𝑗𝑘𝑁𝑖𝑁𝑗 ≈ (𝛿𝑖𝑗 − 2

𝜕𝑢𝑖

𝜕𝑋𝑗
) 𝑁𝑖𝑁𝑗.     (B3) 

 

 From Eq.(A3) let 𝑑𝒙(2) ×  𝑑𝒙(3) = 𝑑𝑆𝒏 where dS is an infinitesimal area with unit 

normal vector n that results from the deformation of the infinitesimal area dS0 = 

|dX(2)||dX(3)| in the X2 -X3 plane with unit normal vector e1.  Writing dx(1) = |dx(1)|m1, where 

m1 is a unit vector, yields the Eulerian specific volume element 𝑑𝑉 as 

 

               𝑑𝑉 = 𝑑𝒙(1) ∙ 𝑑𝒙(2) ×  𝑑𝒙(3) = |𝑑𝒙(1)|𝒎1 ∙ 𝒏 𝑑𝑆 = 𝑑𝐿𝑑𝑆,  (B4) 

 

where dL is the projection of dx(1) = |dx(1)|m1 along the direction n obtained from Eqs.(A1) 

and (B4) as 

                             𝑑𝐿 = 𝑑𝒙(1) ∙ 𝒏 = |𝑑𝑿(1)|𝛼𝑗1𝛾𝑖𝑗𝑁𝑖 𝑓𝑁⁄ = |𝑑𝑿(1)| 𝑓𝑁⁄ .    (B5) 

 

Writing ℓ = 𝑑𝐿   and  ℓ0 = |𝑑𝑋(1)| in Eq.(B5) and using the definition of fN given in 

Eq.(B3) lead to the relation 

           𝑅 =
ℓ0

ℓ
= 𝑓𝑁 = [(𝛿𝑖𝑗 − 2

𝜕𝑢𝑖

𝜕𝑋𝑗
) 𝑁𝑖𝑁𝑗]

1/2

.   (B6) 

 

From Eq.(A3) and Eq.(B5) for dL the ratio of the Eulerian specific volume element 𝑑𝑉 to 

the Lagrangian specific volume element 𝑑𝑉0 is obtained as 

 

                              𝑑𝑉 𝑑𝑉0⁄ = 𝑑𝐿𝑑𝑆 (|𝑑𝑿(1)|⁄ 𝑑𝑆0) = 𝑑𝑆 (𝑑𝑆0⁄ 𝑓𝑁) = 𝐽,   (B7) 

 

which leads to  

 𝑑𝑆 𝑑𝑆0⁄ = 𝐽𝑓𝑁.      (B8) 
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A stress is defined as a force per unit area.  It is noted that while the strain is defined 

with respect to the initial state of the material (i.e., with respect to the Lagrangian 

coordinates), the force Fi is usually defined with respect to a unit area of deformed material 

(i.e., with respect to the Eulerian coordinates) [55].  An exception is the second Piola-

Kirchhoff stress for which the force is referred to the undeformed state (Lagrangian 

coordinates) [55].  For acoustic wave propagation, the Cauchy (Eulerian) stress and first 

Piola-Kirchhoff (Lagrangian) stress are generally used.  The force per unit area referred to 

the present configuration is called the Eulerian or Cauchy stress Tij.  It is a force per unit 

area for which both the force and the area are referred to the deformed state x [55-60].  The 

Cauchy stress is symmetric and the i-component of the force Fi in Eulerian coordinates is 

Fi = TjinjdS = TijnjdS where n is the unit vector normal to the surface area dS.  The force 

per unit area referred to the initial configuration is called the Lagrangian or first Piola-

Kirchhoff stress ij.  It is a stress for which the force is referred to the deformed state x but 

the area is referred to the initial state X of the material [55-60].  The i-component of force 

in Lagrangian coordinates is obtained as ikNkdS0 where N is the unit vector normal to the 

surface area dS0.  Since the force Fi is defined with respect to a unit area of deformed 

material (i.e., with respect to the Eulerian coordinates), this imposes that the relationship 

between the Lagrangian and Eulerian stresses is governed by the relationship between the 

surface areas dS and dS0.   

Since the i-component of the force in Lagrangian coordinates is ikNkdS0 and the 

force Fi = TjinjdS is defined with respect to the Eulerian coordinates, it is appropriate to 

write the i-component of the force per area dS0 in Lagrangian coordinates as  

𝜎𝑖𝑘𝑁𝑘 =
𝐹𝑖

𝑑𝑆0
= 𝑇𝑗𝑖𝑛𝑗

𝑑𝑆

𝑑𝑆0
= 𝐽𝑓𝑁𝑇𝑗𝑖𝑛𝑗 = 𝐽𝛾𝑘𝑗𝑇𝑗𝑖𝑁𝑘     (B9) 

where Eqs.(B2) and (B8) have been used to obtain the last two equalities in Eq.(B9).  From 

the first and last equalities in Eq.(B9) the relationship between the Lagrangian stress ik 

and Eulerian stress Tij = Tji is obtained as 
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                 𝜎𝑖𝑘 = 𝐽𝛾𝑘𝑗𝑇𝑗𝑖       (B10) 

or equivalently 

                       𝑇𝑖𝑗 =
1

𝐽
𝛼𝑖𝑘𝜎𝑗𝑘    .         (B11) 

 

Eqs.(B10) and (B11) are in agreement with previous derivations using other 

(mathematically equivalent) approaches [55-60].  The equations are re-derived here to 

emphasize the importance of using the transformation coefficients ij and ij in establishing 

the connection between the Lagrangian and Eulerian stresses and pressures.  Eqs.(B10) and 

(B11) also hold for the dynamical case of acoustic wave propagation, since for non-uniform 

deformations the transformation is considered to be local in X at time t such that x = x(X, 

t).  Thus, the derivation also clearly shows that, contrary to a commonly held assumption, 

the Cauchy stress is the stress referred to Eulerian coordinates and when time-averaged is 

the acoustic radiation stress in Eulerian coordinates.  Finally, it is assumed that the 

coordinate transformation is between the initial state and the final (present) state of the 

material and that the initial state may result from a constant applied or residual stress, or 

initial pressure. 
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